Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where nothing grows anymore

10.03.2014

Geographers of the University of Jena are looking into the typical landscape of Tuscany

Vast fields of sunflowers, sprawling pine trees and slim cypresses, as well as vineyards as far as the eye can see – these are typical memories of Tuscany for all those who have been there.


The region known as ‘Crete Senesi’ between Florence and Grosseto. The small hills are typically characterized by erosion.

Photo: Beate Michalzik/FSU

By contrast, Professor Dr. Beate Michalzik from the Friedrich Schiller University of Jena and her colleagues are interested in the more barren aspects of the region in Central Italy: In a study the Jena geographers analyzed the condition of the soil in the region known as ‘Crete Senesi’ between Florence and Grosseto, whose hills are typically characterized by erosion – for the moment at least, because the so-called badlands of Tuscany are acutely endangered.

“Erosion is threatening the many small peaks known as biancane’ due to their whitish color. They are marked by a bleak, strongly declining south side and a less declining north side, overgrown by herbs”, Prof. Michalzik explains. Every year one to two centimeters of the loose bare ground on the south side of the slope are being eaten away by wind and weather.

But why, asked the chair of Soil Science, is there a protective blanket of sage brush, orchard grass, wild rye and curry plant only on one side of the hill and not on the other one? Michalzik and two former students from Jena tried to literally unearth the answer to this question. As Peggy Bierbaß, Michael Wündsch and Beate Michalzik write in the science magazine ‘Catena‘: this typically Tuscan landscape is the result of an intense interplay of the condition of the soil, the vegetation and the land-use (DOI: 10.1016/j.catena.2013.08.003).

In the Val d’Orcia, about 30 kilometers south of Siena, the Jena students and their supervisors took 12 samples of the soil of a biancana hill within the context of fieldwork. In the laboratory they analyzed their chemical, physical and hydrological qualities and discovered that the concentration of sodium in the soil is crucial for its stability.

“In the barren part of the hills the concentration of sodium is distinctly higher than on the vegetated side,” Michael Wündsch explains the central finding. The high concentration of sodium lowers the coagulation of the individual layers of clay and therefore they are more easily affected by the rain. The result: less stability and more erosion.

An additional reason can be found in the vegetation itself. “In places where something once grew, organic material finds its way into the ground and serves as a kind of intercellular cement and protects the ground from erosion,” Peggy Bierbaß says. Moreover, the vegetation leads to a better overall wetting mesh, which adds to the greening and also protects the ground.

A targeted greening of the barren surfaces of the biancane hills could possibly stabilize them. However, Beate Michalzik explains, this wouldn’t stop the gradual disappearance of this landscape either, as can be seen by the growing agricultural use of the region.

“In the last decades bigger and bigger stretches of land have been used for wheat growing, which takes away the unique character of this landscape,” states Michalzik. According to today’s estimates, the badlands of Tuscany will have disappeared completely in 35 to 40 years.

Original Publication:
Bierbaß P et al. The impact of vegetation on the stability of dispersive material forming biancane badlands in Val d’Orcia, Tuscany, Central Italy, Catena 113 (2014) 260–266, DOI: 10.1016/j.catena.2013.08.003

Contact:
Prof. Dr. Beate Michalzik, Michael Wündsch
Institute of Geography
Friedrich Schiller University of Jena
Löbdergraben 32, 07743 Jena
Germany
Phone: ++49 3641 948820, ++49 3641 948807
Email: beate.michalzik[at]uni-jena.de, michael.wuendsch[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: Erosion Friedrich-Schiller-Universität Soil landscape memories surfaces

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>