Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wenchuan earthquake mudslides emit greenhouse gas

03.03.2009
Mudslides that followed the 12 May 2008 Wenchuan, China earthquake, ranked by the US Geological Survey as the 11th deadliest earthquake ever recorded, may cause a carbon-dioxide release in upcoming decades equivalent to two percent of current annual global carbon emissions from fossil fuel combustion, a new study shows.

Mudslides wipe away plants and topsoil, depleting terrain of nutrients for plant regrowth and burying swaths of vegetation. Buried vegetable matter decomposes and releases carbon dioxide and other gases to the atmosphere.

The expected carbon dioxide release from the mudslides following the Wenchuan earthquake is similar to that caused by Hurricane Katrina's plant damage, report Diandong Ren, of the University of Texas at Austin, and his colleagues, who used a computer model to predict the ecosystem impacts of the mudslides.

What's more, the vegetation destruction will lead to a loss of nitrogen from the quake-devastated region's ecosystem twice as large as the loss of that nutrient from California ecosystems because of the October 2007 wildfires there, Ren says. And, as the biomass buried by the China quake rots, 14 percent of the nitrogen will be spewed into the atmosphere as nitrous oxide, a pollutant typically released from agricultural operations, automobiles, and other sources.

The team will publish its findings on 4 March 2009 in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Although landscapes devastated by the Chinese earthquake may re-green soon, the recovery will be cosmetic, says Ren. "From above, the area will look green in a few years, because grass grows back quickly, but the soil nutrients recover very slowly, and other kinds of plants won't grow," he says.

The magnitude-7.9 Wenchuan quake was followed by many aftershocks in the Sichuan Basin, an area that, because of its geological features - deep valleys enclosed by high mountains with steep slopes - is already prone to landslides. May is also the rainy season in Sichuan, and the combination of aftershocks and major precipitation events in the days following the earthquake caused severe mudslides. The avalanches killed thousands, destroyed roads and blocked rivers and access to relief, and shredded water and power stations, among other facilities. To predict ecosystem impacts of the mudslides, Ren and his collaborators applied a comprehensive computer model of landslides that incorporates several physical parameters, such as soil mechanics, root mechanical reinforcement (the root's grip of the dirt, which mitigates erosion), and precipitation.

Ren's model also shows that the primary mudslides following the earthquake removed large areas of nutrient-rich topsoil, leaving behind deep scars in the land that will take decades to recover, preventing the re-growth of vegetation.

The researchers write in their paper that, although being able to predict the location and timing of a mudslide is essential to mitigate its impacts, current mudslide models are not accurate enough.

"Previous approaches, which are mainly based on statistical approaches and empirical measures, have no predictive ability of where mudslides are going to happen," Ren says. His model, he claims, could be applied to forecast under what circumstances a landslide would occur at a specific location. He points out this would be particularly useful for places such as Southern California, where global warming predictions call for an increase in the frequency of these events.

Citation:
Ren, D., J. Wang, R. Fu, D. J. Karoly, Y.Hong, L. M. Leslie, C. Fu, andG.Huang (2009), Mudslide-caused ecosystem degradation following Wenchuan earthquake 2008, Geophys. Res. Lett., 36, L05401, doi:10.1029/2008GL036702.
Contact information for author:
Diandong Ren: +1 (512) 232-6273, DiandongRen1972@mail.utexas.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://dx.doi.org/10.1029/2008GL036702

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>