Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wenchuan earthquake mudslides emit greenhouse gas

03.03.2009
Mudslides that followed the 12 May 2008 Wenchuan, China earthquake, ranked by the US Geological Survey as the 11th deadliest earthquake ever recorded, may cause a carbon-dioxide release in upcoming decades equivalent to two percent of current annual global carbon emissions from fossil fuel combustion, a new study shows.

Mudslides wipe away plants and topsoil, depleting terrain of nutrients for plant regrowth and burying swaths of vegetation. Buried vegetable matter decomposes and releases carbon dioxide and other gases to the atmosphere.

The expected carbon dioxide release from the mudslides following the Wenchuan earthquake is similar to that caused by Hurricane Katrina's plant damage, report Diandong Ren, of the University of Texas at Austin, and his colleagues, who used a computer model to predict the ecosystem impacts of the mudslides.

What's more, the vegetation destruction will lead to a loss of nitrogen from the quake-devastated region's ecosystem twice as large as the loss of that nutrient from California ecosystems because of the October 2007 wildfires there, Ren says. And, as the biomass buried by the China quake rots, 14 percent of the nitrogen will be spewed into the atmosphere as nitrous oxide, a pollutant typically released from agricultural operations, automobiles, and other sources.

The team will publish its findings on 4 March 2009 in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Although landscapes devastated by the Chinese earthquake may re-green soon, the recovery will be cosmetic, says Ren. "From above, the area will look green in a few years, because grass grows back quickly, but the soil nutrients recover very slowly, and other kinds of plants won't grow," he says.

The magnitude-7.9 Wenchuan quake was followed by many aftershocks in the Sichuan Basin, an area that, because of its geological features - deep valleys enclosed by high mountains with steep slopes - is already prone to landslides. May is also the rainy season in Sichuan, and the combination of aftershocks and major precipitation events in the days following the earthquake caused severe mudslides. The avalanches killed thousands, destroyed roads and blocked rivers and access to relief, and shredded water and power stations, among other facilities. To predict ecosystem impacts of the mudslides, Ren and his collaborators applied a comprehensive computer model of landslides that incorporates several physical parameters, such as soil mechanics, root mechanical reinforcement (the root's grip of the dirt, which mitigates erosion), and precipitation.

Ren's model also shows that the primary mudslides following the earthquake removed large areas of nutrient-rich topsoil, leaving behind deep scars in the land that will take decades to recover, preventing the re-growth of vegetation.

The researchers write in their paper that, although being able to predict the location and timing of a mudslide is essential to mitigate its impacts, current mudslide models are not accurate enough.

"Previous approaches, which are mainly based on statistical approaches and empirical measures, have no predictive ability of where mudslides are going to happen," Ren says. His model, he claims, could be applied to forecast under what circumstances a landslide would occur at a specific location. He points out this would be particularly useful for places such as Southern California, where global warming predictions call for an increase in the frequency of these events.

Citation:
Ren, D., J. Wang, R. Fu, D. J. Karoly, Y.Hong, L. M. Leslie, C. Fu, andG.Huang (2009), Mudslide-caused ecosystem degradation following Wenchuan earthquake 2008, Geophys. Res. Lett., 36, L05401, doi:10.1029/2008GL036702.
Contact information for author:
Diandong Ren: +1 (512) 232-6273, DiandongRen1972@mail.utexas.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://dx.doi.org/10.1029/2008GL036702

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>