Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wenchuan earthquake mudslides emit greenhouse gas

03.03.2009
Mudslides that followed the 12 May 2008 Wenchuan, China earthquake, ranked by the US Geological Survey as the 11th deadliest earthquake ever recorded, may cause a carbon-dioxide release in upcoming decades equivalent to two percent of current annual global carbon emissions from fossil fuel combustion, a new study shows.

Mudslides wipe away plants and topsoil, depleting terrain of nutrients for plant regrowth and burying swaths of vegetation. Buried vegetable matter decomposes and releases carbon dioxide and other gases to the atmosphere.

The expected carbon dioxide release from the mudslides following the Wenchuan earthquake is similar to that caused by Hurricane Katrina's plant damage, report Diandong Ren, of the University of Texas at Austin, and his colleagues, who used a computer model to predict the ecosystem impacts of the mudslides.

What's more, the vegetation destruction will lead to a loss of nitrogen from the quake-devastated region's ecosystem twice as large as the loss of that nutrient from California ecosystems because of the October 2007 wildfires there, Ren says. And, as the biomass buried by the China quake rots, 14 percent of the nitrogen will be spewed into the atmosphere as nitrous oxide, a pollutant typically released from agricultural operations, automobiles, and other sources.

The team will publish its findings on 4 March 2009 in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Although landscapes devastated by the Chinese earthquake may re-green soon, the recovery will be cosmetic, says Ren. "From above, the area will look green in a few years, because grass grows back quickly, but the soil nutrients recover very slowly, and other kinds of plants won't grow," he says.

The magnitude-7.9 Wenchuan quake was followed by many aftershocks in the Sichuan Basin, an area that, because of its geological features - deep valleys enclosed by high mountains with steep slopes - is already prone to landslides. May is also the rainy season in Sichuan, and the combination of aftershocks and major precipitation events in the days following the earthquake caused severe mudslides. The avalanches killed thousands, destroyed roads and blocked rivers and access to relief, and shredded water and power stations, among other facilities. To predict ecosystem impacts of the mudslides, Ren and his collaborators applied a comprehensive computer model of landslides that incorporates several physical parameters, such as soil mechanics, root mechanical reinforcement (the root's grip of the dirt, which mitigates erosion), and precipitation.

Ren's model also shows that the primary mudslides following the earthquake removed large areas of nutrient-rich topsoil, leaving behind deep scars in the land that will take decades to recover, preventing the re-growth of vegetation.

The researchers write in their paper that, although being able to predict the location and timing of a mudslide is essential to mitigate its impacts, current mudslide models are not accurate enough.

"Previous approaches, which are mainly based on statistical approaches and empirical measures, have no predictive ability of where mudslides are going to happen," Ren says. His model, he claims, could be applied to forecast under what circumstances a landslide would occur at a specific location. He points out this would be particularly useful for places such as Southern California, where global warming predictions call for an increase in the frequency of these events.

Citation:
Ren, D., J. Wang, R. Fu, D. J. Karoly, Y.Hong, L. M. Leslie, C. Fu, andG.Huang (2009), Mudslide-caused ecosystem degradation following Wenchuan earthquake 2008, Geophys. Res. Lett., 36, L05401, doi:10.1029/2008GL036702.
Contact information for author:
Diandong Ren: +1 (512) 232-6273, DiandongRen1972@mail.utexas.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://dx.doi.org/10.1029/2008GL036702

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>