Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Weather extremes are growing trend in Northern Australia, corals show

The extreme rain events that have caused flooding across northern Australia may become an increasingly familiar occurrence, new research suggests. The study uses the growth patterns in near-shore corals to determine which summers brought more rain than others, creating a centuries-long rainfall record for northern Australia.

“This reconstruction provides a new insight into rainfall in northeast Queensland,” says Janice Lough, climate scientist of the Australian Institute of Marine Science (AIMS) in Townsville, Queensland, who authored the study. “These coral samples, which date from 1639 to 1981, suggest that the summer of 1973-1974 was the wettest in 300 years. This summer is now being compared with that record-setting one.”

Eastern Australia is recovering from a fierce cyclone that struck last week, adding to damage from serious flooding. The flooding began in November following record rainfall, and has slowly spread to the south along the coast.

Lough’s research indicates the country might be in for more weather extremes. Following a period of relatively low precipitation and rainfall variability from the mid-18th to mid-19th centuries, average rainfall for the region has significantly increased and become more variable since the late 19th century, with wet and dry extremes becoming more frequent, she says. Her new findings have been accepted for publication in Paleoceanography, a journal of the American Geophysical Union.

To create the rainfall record, Lough selected cores from her institute’s archive that had been taken from long-lived, massive Porites coral found along Australia’s Great Barrier Reef. The 17 samples had been collected from reefs located up to 30 kilometers (about 19 miles) away from Queensland’s northeastern shore.

Porites form large dome-shaped colonies that can be up to 8 meters (26 feet) in height and hundreds of years old. The coral colonies secrete underlying calcium-carbonate skeletons in annual bands of dense and less dense material. The coral bands can be counted like tree rings to calculate the colony’s age. The oldest core Lough analyzed dates back to 1639; the other coral cores analyzed for the study date back to the 17th to 19th centuries.

Northern Australian rainfall is seasonal, occurring almost exclusively during the summer. It is also highly variable year-to-year. The rain flushes degraded plant matter and a mix of compounds called humic acids into the ocean, particularly near the coast. During wet summers, more humic acid gets absorbed by the coral and stored in its skeleton. When slices of the coral are analyzed under ultraviolet light, the growth bands with more humic acid luminesce more (giving off more light) than the bands of coral growth from drier years, which allows researchers to create a record of rainfall. (The corals stimulated by ultraviolet light emit light through both fluorescence and phosphorescence; the term luminescence includes both sources of light.)

Lough used a custom-built luminometer to measure the intensity of the luminescence, which she translated into relative rainfall for each yearly band preserved in the coral. The annual records from the multiple coral cores were then calibrated against the instrumental rainfall record of the 20th century and used to reconstruct summer rainfall records back to the start of the coral colonies’ growth.

The records show that the frequency of extreme events has changed over the centuries, and is currently at a peak. During the earliest part of the reconstructed record, from about 1685 to 1784, wet years occurred on average every 12 years, and very dry years every nine. From 1785 to 1884, the frequency dropped: very wet years occurred about every 25 years, and very dry years every 14 years. However, between 1885 and 1981, the extremes increased dramatically in frequency, with very dry years taking place every 7.5 years on average, and very wet years about once every three years.

As a second part of the study, Lough compares the coral records with other proxy climate records from the paleoclimatology database of the National Oceanic and Atmospheric Administration, a U.S. agency. The level of agreement between the different records was mixed, but the increase in rainfall variability since the late 19th century is evident in two independently-derived proxy records of a recurrent tropical climate pattern known as the El Niño-Southern Oscillation.

A record of Australia’s past climate is particularly valuable, Lough says, as there is an overall lack of data on long-term climate variability in the tropics and the southern hemisphere. Such data is needed to place the current variability of the region’s climate in an historical context. The records derived from the Great Barrier Reef corals support predictions that tropical rainfall variability will increase in a warming world. AIMS researchers are currently analyzing coral cores from other tropical coral reefs of Australia to further study long-term rainfall and climate patterns.

“Great Barrier Reef coral luminescence reveals rainfall variability over northeastern Australia since the 17th century”
Janice Lough, Senior Principal Research Scientist, Australian Institute of Marine Science, Queensland, Australia.
Contact information for the author:
Phone: 61 07 47534248, E-mail:

Kathleen O’Neil | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>