Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why how much water runs down the rivers

22.10.2008
Humans are increasingly altering the amount of water that runs from the land to the sea or inland waters. Calculations with a global vegetation and hydrology model indicate that precipitation had the largest impact on global river discharge over the 20th century.

Regionally, however, discharge varied according to factors such as land use change and irrigation practices, temperature, and the concentration of the greenhouse gas carbon dioxide (CO2), researchers from the Potsdam Institute for Climate Impact Research (PIK) report in the journal "Geophysical Research Letters". The impact of these mainly anthropogenically driven factors on discharge and the availability of water for human use is expected to grow in the future.

"How much the subtle increase in discharge during the 20th century is due to the rising CO2 concentration is the subject of scientific debate," says Dieter Gerten, lead author of the study. His team studied the effects of changes in climate, CO2 concentration, land cover and land use on river discharge using the dynamic global vegetation model LPJmL ("Lund-Potsdam-Jena managed Land" model). "Modelling shows that an increase in global precipitation was the driving force for the increase in river discharge", says the geographer and hydrologist.

The researchers used data from the Climatic Research Unit (CRU) at the University of East Anglia in Norwich, UK, a standard data set used in global modelling, as input to the vegetation model for simulating river discharge patterns. The simulations show large changes in the amounts of discharge during the last century in many regions of the world. In line with observations, river discharge decreased in North and West Africa, Central and Eastern Europe and parts of South Asia. It increased in parts of Siberia, as well as North and South America.

Global river discharge normally amounts to 35,000 to 40,000 cubic kilometres annually. According to the CRU climate data it increased by 7.7 percent during the last century, the researchers report. Approximately 95,000 to 110,000 cubic kilometres of precipitation fall on land surface each year. However, because regional amounts of precipitation and trends vary between different data sets, and other data do not indicate a clear global trend, it remains unclear whether there is actually an increase in global river discharge.

Following precipitation, land use had the largest impact on river discharge. During the last century, humans have increased global discharge by 1.7 percent, especially by deforestation. While irrigation caused significant regional decreases in discharge, its global effect on river discharge was negligible.

Over the last century, global warming decreased river discharge by 0.9 percent. This trend, due basically to increased evapotranspiration, was strongest at high latitudes and in parts of Central Asia. The global temperature signature has become increasingly evident in recent decades, the researchers write. Calculations based on three IPCC scenarios indicate that this trend will continue and that global warming alone could reduce global river discharge by six percent by the end of the 21st century.

Theoretically, the rise in the concentration of CO2 could reinforce this trend. The greenhouse gas could have a fertilizing effect that leads to an expansion of vegetation cover. On a regional level, more plants would take more water from the soil and thus decrease river discharge. Globally, however, the fertilization effect is negligible. Another direct effect of increased CO2 concentration has increased discharge by more than one percent between 1901 and 2002: under a higher concentration of CO2 plants need to open their stomata less in order to take up enough CO2 for growth. Therefore, evapotranspiration decreases and they take less water from the ground.

"The net effect of the rising CO2 concentration in the atmosphere could increase global river discharge by a further five percent by 2100," says Dieter Gerten. Globally, this would probably compensate the negative impacts of temperature. However, temperature and CO2 effects would not necessarily affect the same regions. The researchers are planning further studies to investigate possible developments of future water availability and demand worldwide.

"Currently, our model is the only one that can take the effects of all these factors into account," says Wolfgang Lucht, chair of the PIK research domain "Climate Impacts & Vulnerabilities". To achieve this, knowledge about hydrology needs to be combined with knowledge about vegetation dynamics. "The calculations indicate that human activities are having an increasing impact on the Earth's water balance", says Lucht. To be able to make more precise projections of future water availability, more methods of measurement and more data are needed. The researchers therefore call for a stop to the current deconstruction of the global meteorological network.

Article:
Gerten, D., S. Rost, W. von Bloh, and W. Lucht (2008), Causes of change in 20th century global river discharge, Geophysical Research Letters, 35, L20405, doi:10.1029/2008GL035258.
For further information please contact the PIK press office:
Phone: +49 331 288 2507
E-mail: press@pik-potsdam.de

Patrick Eickemeier | idw
Further information:
http://www.agu.org/journals/gl/
http://www.pik-potsdam.de/news/press-releases/why-how-much-water-runs-down-the-rivers?set_language=en

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>