Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The water cycle amplifies abrupt climate change

20.01.2014
The role of the hydrological cycle during abrupt temperature changes is of prime importance for the actual impact of climate change on the continents.

In a new study published in Nature Geoscience online (January 19, 2014) scientists from the University of Potsdam, Germany and the GFZ German Research Centre for Geosciences show that during the abrupt cooling at the onset of the so-called Younger Dryas period 12680 years ago changes in the water cycle were the main drivers of widespread environmental change in western Europe.


Maar of Meerfeld
(copyright: Tourist Information Manderscheid)

The team of scientists analyzed organic remains extracted from Meerfelder maar lake sediments from the Eifel region, western Germany, to reconstruct changes in precipitation patterns in unprecedented detail. They were able to show that the intrusion of dry polar air into western Europe lead to the collapse of local ecosystems and resulted in the observed widespread environmental changes at that time.

Organic remains of plants from lake sediments as molecular rain gauges
The exact sequence of events during abrupt climate changes occurring over only a few years is one of the great unknowns in paleoclimate research. The new results presented here were obtained by using a novel method, where molecular organic remains derived from plant fossils were extracted from precisely dated annually laminated lake sediments. The ratio of the heavy Deuterium to the light Hydrogen isotopes in these biomarkers can be used to reconstruct changes in precipitation regime and moisture sources with unprecedented detail.
The Younger Dryas period was the last major cold period at the end of the last glaciation with a duration of about 1100 years, when an abrupt change in the pathway of westerly wind systems over Europe lead to massive environmental change within a few years, as GFZ scientists showed in an earlier study. Dirk Sachse, the head of the workgroup at the Institute of Earth and Environmental Sciences of the Potsdam University explains: “In our new study we can show for the first time that this change in the pathway of westerly wind systems brought dry polar air into western Europe and this was the ultimate cause for the widespread disappearance of forests in the area.”

Changing westerly wind pathways bring dry polar air into western Europe
With these new results, the group also supports the hypothesis that this change in atmospheric circulation patterns over western Europe took place 170 years after the onset of cooling, as observed in the Greenland Icecores. The authors attribute this delay to the subsequent southward expansion of sea ice in the North Atlantic following the onset of cooling. This lead to a southward shift of the polar front channeling dry polar air into western Europe. “Our results also show that abrupt climate and environmental change may not be coeval on large regional scales, but can take place with substantial regional and temporal delays” explains Prof. Achim Brauer from the GFZ German Research Centre for the Geosciences.
The results of this study, which was funded by the German Research Foundation (DFG) through its Emmy-Noether Programme and the Helmholtz Climate Initiative REKLIM, do not only show unequivocally that temperature changes can have regionally different impacts, but also that the water cycle acts as amplifier of change with potentially severe effects on continental ecosystems. As such, the regional impacts of future climate changes can be largely driven by hydrological changes, not only in the monsoonal areas of the world, but also in temperate areas, such as western Europe. The results of this study contribute to the development of higher spatially resolved regional climate models, which will allow for a better prediction of the regional impacts of future climate change.

contact: Dr. Dirk Sachse, E-mail: dirk.sachse(at)geo.uni-potsdam.de
Prof. Dr. Achim Brauer, E-mail: brau(at)gfz-potsdam.de
Internet: http://dx.doi.org/10.1038/ngeo2053

Rach, Oliver; Brauer, Achim; Wilkes, Heinz; Sachse, Dirk (2014): “Delayed Hydrological Response to Greenland Cooling at the onset of the Younger Dryas in Western Europe”, Nature Geoscience, Advance Online Publication, Jan. 19, 2014; doi:10.1038/ngeo2053

Franz Ossing | GFZ Potsdam
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>