Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The water cycle amplifies abrupt climate change

20.01.2014
The role of the hydrological cycle during abrupt temperature changes is of prime importance for the actual impact of climate change on the continents.

In a new study published in Nature Geoscience online (January 19, 2014) scientists from the University of Potsdam, Germany and the GFZ German Research Centre for Geosciences show that during the abrupt cooling at the onset of the so-called Younger Dryas period 12680 years ago changes in the water cycle were the main drivers of widespread environmental change in western Europe.


Maar of Meerfeld
(copyright: Tourist Information Manderscheid)

The team of scientists analyzed organic remains extracted from Meerfelder maar lake sediments from the Eifel region, western Germany, to reconstruct changes in precipitation patterns in unprecedented detail. They were able to show that the intrusion of dry polar air into western Europe lead to the collapse of local ecosystems and resulted in the observed widespread environmental changes at that time.

Organic remains of plants from lake sediments as molecular rain gauges
The exact sequence of events during abrupt climate changes occurring over only a few years is one of the great unknowns in paleoclimate research. The new results presented here were obtained by using a novel method, where molecular organic remains derived from plant fossils were extracted from precisely dated annually laminated lake sediments. The ratio of the heavy Deuterium to the light Hydrogen isotopes in these biomarkers can be used to reconstruct changes in precipitation regime and moisture sources with unprecedented detail.
The Younger Dryas period was the last major cold period at the end of the last glaciation with a duration of about 1100 years, when an abrupt change in the pathway of westerly wind systems over Europe lead to massive environmental change within a few years, as GFZ scientists showed in an earlier study. Dirk Sachse, the head of the workgroup at the Institute of Earth and Environmental Sciences of the Potsdam University explains: “In our new study we can show for the first time that this change in the pathway of westerly wind systems brought dry polar air into western Europe and this was the ultimate cause for the widespread disappearance of forests in the area.”

Changing westerly wind pathways bring dry polar air into western Europe
With these new results, the group also supports the hypothesis that this change in atmospheric circulation patterns over western Europe took place 170 years after the onset of cooling, as observed in the Greenland Icecores. The authors attribute this delay to the subsequent southward expansion of sea ice in the North Atlantic following the onset of cooling. This lead to a southward shift of the polar front channeling dry polar air into western Europe. “Our results also show that abrupt climate and environmental change may not be coeval on large regional scales, but can take place with substantial regional and temporal delays” explains Prof. Achim Brauer from the GFZ German Research Centre for the Geosciences.
The results of this study, which was funded by the German Research Foundation (DFG) through its Emmy-Noether Programme and the Helmholtz Climate Initiative REKLIM, do not only show unequivocally that temperature changes can have regionally different impacts, but also that the water cycle acts as amplifier of change with potentially severe effects on continental ecosystems. As such, the regional impacts of future climate changes can be largely driven by hydrological changes, not only in the monsoonal areas of the world, but also in temperate areas, such as western Europe. The results of this study contribute to the development of higher spatially resolved regional climate models, which will allow for a better prediction of the regional impacts of future climate change.

contact: Dr. Dirk Sachse, E-mail: dirk.sachse(at)geo.uni-potsdam.de
Prof. Dr. Achim Brauer, E-mail: brau(at)gfz-potsdam.de
Internet: http://dx.doi.org/10.1038/ngeo2053

Rach, Oliver; Brauer, Achim; Wilkes, Heinz; Sachse, Dirk (2014): “Delayed Hydrological Response to Greenland Cooling at the onset of the Younger Dryas in Western Europe”, Nature Geoscience, Advance Online Publication, Jan. 19, 2014; doi:10.1038/ngeo2053

Franz Ossing | GFZ Potsdam
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht Past and present sea levels in the Chesapeake Bay Region, USA
29.07.2015 | Geological Society of America

nachricht “Carbon sink” detected underneath world’s deserts
29.07.2015 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>