Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic gases could deplete ozone layer

12.06.2012
Giant volcanic eruptions in Nicaragua over the past 70,000 years could have injected enough gases into the atmosphere to temporarily thin the ozone layer, according to new research.

And, if it happened today, a similar explosive eruption could do the same, releasing more than twice the amount of ozone-depleting halogen gases currently in stratosphere due to manmade emissions.

Bromine and chlorine are gases that “love to react — especially with ozone,” said Kirstin Krüger, a meteorologist with GEOMAR in Kiel, Germany. “If they reach the upper levels of the atmosphere, they have a high potential of depleting the ozone layer.”

New research by Krüger and her colleagues, which she presented today at a scientific conference in Selfoss, Iceland, combined a mixture of field work, geochemistry and existing atmospheric models to look at the previous Nicaraguan eruptions. And the scientists found that the eruptions were explosive enough to reach the stratosphere, and spewed out enough bromine and chlorine in those eruptions, to have an effect on the protective ozone layer. Krüger’s talk was at the American Geophysical Union’s Chapman Conference on Volcanism and the Atmosphere.

Steffen Kutterolf, a chemical volcanologist with GEOMAR and one of Krüger’s colleagues, tackled the question of how much gas was released during the eruptions. He analyzed gases that were trapped by minerals crystallizing in the magma chambers, and applied a novel method that involves using the high-energy radiation from the German Electron Synchrotron in Hamburg to detect trace elements, including bromine. From that, Kutterolf estimated the amount of gas within magma before the eruptions, as well as the gas content in the lava rocks post-eruption. The difference, combined with existing field data about the size of the eruption, allowed the scientists to calculate how much bromine and chlorine are released.

Previous studies have estimated that in large, explosive eruptions — the type that sends mushroom clouds of ash kilometers high — up to 25 percent of the halogens ejected can make it to the stratosphere. For this study, the research team used a more conservative estimate of 10 percent reaching the stratosphere, to calculate the potential ozone layer depletion.

Taking an average from 14 Nicaraguan eruptions, the scientists found bromine and chlorine concentrations in the stratosphere jumped to levels that are equivalent to 200 percent to 300 percent of the 2011 concentrations of those gases. The Upper Apoyo eruption 24,500 years ago, for example, released 120 megatons of chlorine and 600 kilotons of bromine into the stratosphere.

Volcanic sulfate aerosols alone can lead to an ozone increase — if chlorine levels are at low, pre-industrial levels, Krüger said. But bromine and chlorine are halogens, gases whose atoms have seven electrons in the outer ring. To reach a stable, eight-electron configuration, these atoms will rip electrons off of passing molecules, like ozone. So when an eruption also pumps bromine and chlorine levels into the stratosphere, the ozone-depleting properties of the gases together with aerosols is expected to thin the protective layer.

“As we have bromine and chlorine together, we believe that this can lead to substantial depletion,” she said. “And this is from one single eruption.”

Because the effects are in the stratosphere, where the volcanic gases can be carried across the globe, eruptions of tropical volcanoes could lead to ozone depletion over a large area, Krüger said, potentially even impacting the ozone over polar regions. However, that’s a question for future research to address. Some volcanic gases can last in the stratosphere up to six years, she added, although the most significant impacts from eruptions like Mount Pinatubo were within the first two years.

The next step in the research, Krüger said, is to investigate how much damage to the ozone layer the volcanic gases caused in the past — and what the damage could be from future volcanic eruptions in the active Central American region.

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org
http://www.geomar.de
http://www.agu.org/news/press/pr_archives/2012/2012-30.shtml

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>