Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Brief but Violent Life of Monogenetic Volcanoes

05.10.2012
A new study in the journal Geology is shedding light on the brief but violent lives of maar-diatreme volcanoes, which erupt when magma and water meet in an explosive marriage below the surface of the earth.

Maar-diatremes belong to a family of volcanoes known as monogenetic volcanoes. These erupt just once before dying, though some eruptions last for years. Though not particularly famous, monogenetic volcanoes are actually the most common form of land-based volcano on the planet.


Photo credit: Greg Valentine

Lunar Crater maar in Nevada, a maar-diatreme volcano. A new study is shedding light on the explosive mechanism of these volcanoes, which erupt just once before dying.

Despite their number, monogenetic volcanoes are poorly understood, said Greg A. Valentine, PhD, University at Buffalo geology professor.

He is lead author of the new Geology paper, which provides a novel model for describing what happens underground when maar-diatremes erupt. The research appeared online Sept. 18.

"The hazards that are associated with these volcanoes tend to be localized, but they're still significant," Valentine said. "These volcanoes can send ash deposits into populated areas. They could easily produce the same effects that the one in Iceland did when it disrupted air travel, so what we're trying to do is understand the way they behave."

Previously, scientists theorized that maar-diatreme eruptions consisted, underground, of a series of explosions that took place as magma reacted violently with water. With each explosion, the subterranean water table would fall, driving the next explosion even deeper.

Taking into account new geological evidence, Valentine and volcanologist James D.L. White of New Zealand's University of Otago revise this model.

In Geology, they propose that maar-diatreme eruptions consist not of ever-deepening explosions, but of explosions occurring simultaneously over a range of depths.

Under this new paradigm, deep explosions break up buried rock thousands of feet below ground and push it upward. Shallow explosions eject some of this debris from the volcano's depths, but expel far larger quantities of shallow rock.

This model fits well with recent field studies that have uncovered large deposits of shallow rock ringing maar-diatreme volcanoes, with only small amounts of deeper rock present. This was the case, for example, at two sites that Valentine examined at the San Francisco Volcanic Field in Arizona (see the Journal of Volcanology and Geothermal Research at http://tinyurl.com/9g4hoq5).

White and Valentine's description of the eruptive process also corresponds well with White's investigations into the "plumbing" of maar-diatreme volcanoes, the conduits that carry magma toward the surface. These conduits become visible over time as a landscape erodes away, and the main "pipe" -- called a diatreme -- often shows evidence of explosions, including zones of broken-up rock, at a range of depths.

Such findings contradict the older model that White and Valentine argue against.

According to the old model, Valentine explained, ever-deepening explosions should cause shallow rocks to be ejected from the mouth of the volcano first, followed by deposits of deeper and deeper rock fragments. But this isn't what scientists are finding when they analyze geological clues at volcanic sites.

The old model doesn't account for the fact that even when scientists find deep rock fragments at maar-diatreme sites, these bits of rock are mixed mostly with shallow fragments. The old model also doesn't match with White's observations indicating that explosions occur at essentially every depth.

The new model uses the strengths of the old model but accounts for new data. The results give scientists a better basis for estimating the hazards associated with maar-diatreme volcanoes, Valentine said.

Greg Valentine | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>