Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do urban 'heat islands' hint at trees of future?

25.04.2012
Common oaks get a boost in New York's Central Park

City streets can be mean, but somewhere near Brooklyn, a tree grows far better than its country cousins, due to chronically elevated city heat levels, says a new study.

The study, just published in the journal Tree Physiology, shows that common native red oak seedlings grow as much as eight times faster in New York's Central Park than in more rural, cooler settings in the Hudson Valley and Catskill Mountains. Red oaks and their close relatives dominate areas ranging from northern Virginia to southern New England, so the study may have implications for changing climate and forest composition over a wide region.

The "urban heat island" is a well-known phenomenon that makes large cities hotter than surrounding countryside; it is the result of solar energy being absorbed by pavement, buildings and other infrastructure, then radiated back into the air. With a warming climate, it is generally viewed as a threat to public health that needs mitigating. On the flip side, "Some organisms may thrive on urban conditions," said tree physiologist Kevin Griffin of Columbia University's Lamont-Doherty Earth Observatory, who oversaw the study. Griffin said that the city's hot summer nights, while a misery for humans, are a boon to trees, allowing them to perform more of the chemical reactions needed for photosynthesis when the sun comes back up.

With half the human population now living in cities, understanding how nature will interact with urban trees is important, the authors say. "Some things about the city are bad for trees. This shows there are at least certain attributes that are beneficial," said lead author Stephanie Y. Searle, a Washington, D.C., environmental researcher who was a Columbia undergraduate when she started the research.

In spring 2007 and 2008, Searle and colleagues planted seedlings in northeastern Central Park, near 105th Street; in two forest plots in the suburban Hudson Valley; and near the city's Ashokan Reservoir, in the Catskill foothills some 100 miles north of Manhattan. They cared for all the trees with fertilizer and weekly watering. Maximum daily temperatures around the city seedlings averaged more than 4 degrees F higher; minimum averages were more than 8 degrees higher.

By August, the city seedlings had developed eight times more biomass than the country ones, mainly by putting out more leaves. The researchers largely ruled out other factors that might drive tree growth, in part by growing similar seedlings in the lab under identically varying temperatures, and showing much the same result. Due to air pollution, the city also has higher fallout of airborne nitrogen—a fertilizer—which could have helped the trees as well, said Searle, but temperature seemed to be the main factor.

Other experiments done in Japan and Arizona have shown that higher temperatures, especially at night, may promote growth of rice plants and hybrid poplar trees. A 2011 study by a Lamont-based group showed that conifers in far northern Alaska have grown faster in recent years in step with rising temperatures. Some Eastern Seaboard trees also seem to be seeing growth spurts in response to higher carbon-dioxide levels alone, according to a 2010 study by scientists at the Smithsonian Institution.

However, heat can cut both ways; in lower latitudes, rising temperatures and shifting weather patterns appear to be pushing some species over the edge by causing ecological changes that stress them; massive die-offs are underway in the U.S. West and interior Alaska. There is already some evidence that with warming climate, New York area forest compositions are already changing, with northerly species dwindling and southerly ones that tolerate more heat coming in, said Griffin. Red oaks are probably not immune to increasing heat, so there is no guarantee that they would do well in the New York City of the future.

New York City has some 5.2 million trees and is in the midst of a campaign to plant more. "Cities are special places—they might be laboratories for what the world will look like in coming years," said Gary Lovett, a forest ecologist at the Cary Institute of Ecosystem Studies in Millbrook, N.Y., some 90 miles north of Manhattan. With temperatures projected to rise, he said, "what kinds of trees are doing well there now might be related to what kinds might do well up here in a number of years."

The study's other authors are affiliated with the University of Canterbury in Christchurch, New Zealand; Black Rock Forest Consortium in Cornwall, N.Y.; and Weizmann Institute of Science in Rehovoth, Israel.

The paper, "Urban environment of New York City promotes growth in northern red oak seedlings," is at: http://treephys.oxfordjournals.org/content/early/2012/04/05/treephys.tps027.full?sid=ca754aba-06b3-4ae7-bc0e-f3d2e2847b60, or available from the authors.

Author contacts:
Stephanie Y. Searle stephanie@theicct.org 202-534-1612
Kevin Griffin griff@ldeo.columbia.edu 845-365-8371
More information: Kevin Krajick, Senior Science Writer, The Earth Institute kkrajick@ei.columbia.edu 212-854-9729

The Earth Institute, Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth. www.earth.columbia.edu

Lamont-Doherty Earth Observatory seeks fundamental knowledge about the origin, evolution and future of the natural world. Its scientists study the planet from its deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean, providing a rational basis for the difficult choices facing humanity. www.ldeo.columbia.edu

Kevin Krajick | EurekAlert!
Further information:
http://www.ei.columbia.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>