Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undocumented Volcano Contributed to Extremely Cold Decade from 1810-1819

08.12.2009
South Dakota State University researchers and their colleagues elsewhere in America and in France have found compelling evidence of a previously undocumented large volcanic eruption that occurred exactly 200 years ago, in 1809.

The discovery helps explain the record cold decade from 1810-1819.

Researchers made the finding by analyzing chemicals in ice samples from snow-capped Antarctica and Greenland in the Arctic. The year-by-year accumulation of snow in the polar ice sheets records what is going on in the atmosphere.

“We found large amounts of volcanic sulfuric acid in the snow layers of 1809 and 1810 in both Greenland and Antarctica,” said Professor Jihong Cole-Dai of SDSU’s Department of Chemistry and Biochemistry, the lead author in an article published Oct. 25, in the scientific journal Geophysical Research Letters.

Cole-Dai said climate records show that not only were 1816 — the so-called “year without a summer”— and the following years very cold, the entire decade of 1810-1819 is probably the coldest for at least the past 500 years.

Scientists have long been aware that the massive and violent eruption in 1815 of an Indonesian volcano called Tambora, which killed more than 88,000 people in Indonesia, had caused the worldwide cold weather in 1816 and after. Volcanic eruptions have a cooling effect on the planet because they release sulfur gases into the atmosphere that form sulfuric acid aerosols that block sunlight. But the cold temperatures in the early part of the decade, before that eruption, suggest Tambora alone could not have caused the climatic changes of the decade.

“Our new evidence is that the volcanic sulfuric acid came down at the opposite poles at precisely the same time, and this means that the sulfate is from a single, large eruption of a volcano in 1809,” Cole-Dai said. “The Tambora eruption and the undocumented 1809 eruption are together responsible for the unusually cold decade.”

Cole-Dai said the Tambora eruption was immense, sending about 100 million tons of sulfur gas into the atmosphere, but the ice core samples suggest the 1809 eruption was also very large — perhaps half the size of Tambora — and would also have cooled the earth for a few years. The researchers reason that, because the sulfuric acid is found in the ice from both polar regions, the eruption probably occurred in the tropics, as Tambora did, where wind patterns could carry volcanic material to the entire world, including both poles.

Cole-Dai said the research specifically looked for and found a special indicator of sulfuric acid produced from the volcanic sulfur gas in the stratosphere.

The special indicator is an unusual make-up of sulfur isotopes in the volcanic sulfuric acid. Isotopes are different types of atoms of the same chemical element, each having a different number of neutrons, but the same number of protons. The unique sulfur isotope composition is like a fingerprint of volcanic material that has reached the stratosphere, said Cole-Dai.

The stratosphere is the second major layer of the Earth’s atmosphere, reaching from about six miles to about 30 miles above the Earth’s surface at moderate latitudes. To impact global climate, rather than local weather, the sulfur gas of a volcanic eruption has to reach up into the stratosphere and once there, be spread around the globe.

Cole-Dai’s co-authors of the article are SDSU post-doctoral researcher David Ferris and graduate student Alyson Lanciki; Joël Savarino of the Laboratoire de Glaciologie et Géophysique de l’Environment in Grenoble, France; Mélanie Baroni of CEREGE (Le Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement) at L’Université Paul Cézanne in Aix-en-Provence, France; and Mark H. Thiemens of the University of California, San Diego.

The National Science Foundation funded the research.

Jihong Cole-Dai | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>