Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM Scientists Use New Approach to Reveal Function of Greenland’s Ice Sheet

16.08.2013
Findings from a large-scale ice drilling study on the Greenland ice sheet by a team of University of Montana and University of Wyoming researchers may revise the models used to predict how ice sheets move.

The work was published in Science on Aug. 15 in a paper titled “Basal Drainage System Response to Increasing Surface Melt on the Greenland Ice Sheet.”



The bed of the Greenland ice sheet, hidden beneath hundreds to thousands of meters of ice, is one of the most isolated locations on earth – making it difficult for scientists to understand just how the second largest ice body on the planet functions.Meierbachtol

Led by UM glaciologist Joel Harper and with backing from the National Science Foundation, the team of researchers set out to observe and record exactly how melt water flows along the bed of the ice sheet and how that water influences ice sheet acceleration.

“Our ability to predict and understand what’s going to happen in the future hinges on our ability to have an adequate understanding of the present processes and how those might influence future ice sheet behavior under climate changes,” said Toby Meierbachtol, the study’s lead author and a UM doctoral student.

The team employed a unique strategy for collecting widespread measurements of the conditions at the bottom of the ice sheet.

“Our approach was to be lightweight and nimble so that we could drill lots of boreholes all over the ice sheet.” Harper said.

Using a drill designed by Neil Humphrey, UW professor and co-author on the paper, the team melted 23 boreholes through the ice sheet to measure the pressure and flow conditions of the water under the ice. The drill was easily transported by helicopter and even could be carried short distances by six people.

The other component to their strategy was to carefully select a small and hard-working field team. The group comprised two professors, two doctoral students, two graduate students and two undergraduate students.

According to Harper, the team selection was of critical importance. He needed mentally tough team members who both excelled academically and also could withstand difficult conditions. “Our success relied on finding people who were equally comfortable fiddling with circuit boards or fixing a broken generator, and doing those things in the cold and with a relentless wind blowing,” he said.

Once the data was analyzed, the research team discovered that it didn’t match up with the working hypotheses for water flow beneath the ice sheet. This led the scientists to surmise that there are other critical processes at work that had been missing – one possibility being that as the ice sheet accelerates, the acceleration itself opens up space between the ice and bedrock and expands the drainage network.

“This process is largely neglected in current interpretations,” Meierbachtol said. “We need to pull ourselves away from the narrow vision and start to explore some of the other options for transient growth.”

Future warming likely will be enhanced over the Artic. This body of research will provide a more accurate assessment of the impacts of future warming on Greenland.

“Much climate research focuses on documenting recent and ongoing changes, or making projections about future change,” Harper said. “We can only go so far with that work before we hit stumbling blocks resulting from our incomplete understanding of how various components of the climate system work. Our research is focused on unraveling the fundamental physical processes controlling how ice sheets move when sitting on flowing melt water. This basic research is essential to increasing confidence in our understanding of climate and sea level change.”

The full paper can be accessed online at http://www.sciencemag.org/.

Joel Harper | EurekAlert!
Further information:
http://www.sciencemag.org/
http://www.umt.edu

More articles from Earth Sciences:

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

nachricht Newly discovered salty subglacial lakes could help search for life in solar system
12.04.2018 | University of Texas at Austin

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>