Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researcher finds black carbon implicated in global warming

30.07.2010
Increasing the ratio of black carbon to sulfate in the atmosphere increases climate warming, suggests a study conducted by a University of Iowa professor and his colleagues and published in the July 25 issue of the journal Nature Geoscience.

Black carbons -- arising from such sources as diesel engine exhaust and cooking fires -- are widely considered a factor in global warming and are an important component of air pollution around the world, according to Greg Carmichael, Karl Kammermeyer Professor of Chemical and Biochemical Engineering in the UI College of Engineering and co-director of the UI's Center for Global and Regional Environmental Research. Sulfates occur in the atmosphere largely as a result of various industrial processes.

Carmichael's colleagues in the study were V. Ramanathan and Y. Feng of Scripps Institution of Oceanography, La Jolla, Calif.; S-C. Yoon and S-W. Kim of Seoul National University, South Korea; and J. J. Schauer of the University of Wisconsin, Madison.

In order to conduct their study, the researchers made ground-level studies of air samples at Cheju Island, South Korea, and then sampled the air at altitudes between 100 and 15,000 feet above the ground using unmanned aircrafts (UAVs).

They found that the amount of solar radiation absorbed increased as the black carbon to sulphate ratio rose. Also, black carbon plumes derived from fossil fuels were 100 percent more efficient at warming than were plumes arising from biomass burning.

"These results had been indicated by theory but not verified by observations before this work," Carmichael said. "There is currently great interest in developing strategies to reduce black carbon as it offers the opportunity to reduce air pollution and global warming at the same time."

The authors suggest that climate mitigation policies should aim to reduce the ratio of black carbon to sulphate in emissions, as well as the total amount of black carbon released.

In a paper published in May 2008 in Nature Geoscience, Carmichael and Ramanathan found that black carbon soot from diesel engine exhaust and cooking fires -- widely used in Asia -- may play a larger role than previously thought in global warming. They said that coal and cow dung-fueled cooking fires in China and India produce about one-third of black carbon; the rest is largely due to diesel exhaust in Europe and other regions relying on diesel transport. The paper also noted that soot and other forms of black carbon could equal up to 60 percent of the current global warming effect of carbon dioxide, the leading greenhouse gas.

Carmichael is chair of the scientific advisory group for the World Meteorological Organization's GURME (Global atmospheric watch Urban Research Meteorology and Environment) project and chair of the scientific advisory group for the Shanghai Expo pilot project on air quality forecasting. He has worked with Shanghai authorities for three years to help develop an early warning system for air quality problems and heat waves.

The study was funded by National Science Foundation.

STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 371, Iowa City, Iowa 52242-2500.

MEDIA CONTACT: Gary Galluzzo, 319-384-0009, gary-galluzzo@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>