Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI-led team develops more accurate model of climate change’s effect on soil

02.08.2013
It accounts for how in-ground carbon is affected by bacteria and fungi

Scientists from UC Irvine and the National Center for Atmospheric Research have developed a new computer model to measure global warming’s effect on soil worldwide that accounts for how bacteria and fungi in soil control carbon.

They found that soil outcomes based on their microbial model were more reliable than those forecast by traditional models. Study results appear online in Nature Climate Change.

While standard models project modest carbon losses with global warming, the microbial models generate two novel scenarios: One is that soil around the world will accumulate carbon if microbial growth declines with higher temperatures. The second assumes that microbial growth increases with global warming, resulting in large soil carbon losses, meaning much more carbon will be released into the atmosphere.

“The microbial soil model is extremely important to understanding the balance of carbon in the soil versus the atmosphere and how carbon mass in soil is affected by these bacteria and fungi,” said the study’s senior author, Steven Allison, an associate professor of ecology & evolutionary biology and Earth system science at UC Irvine. “Our hope is that this new soil model will be applied to the global Earth system models to better predict overall climate change.”

The researchers also discovered that in cases of increased carbon input to soil (such as carbon dioxide or nutrient fertilization), microbes actually released the added carbon to the atmosphere, while traditional models indicate storage of the additional carbon. This, they said, is further evidence that the Earth system models should incorporate microbial impact on soil to more accurately project climate change ramifications.

“In our microbial model, we directly simulate how the activity of organisms like bacteria and fungi control the storage and losses of soil carbon,” said Will Wieder, a postdoctoral scientist with the National Center for Atmospheric Research in Boulder, Colo. “Now that we can more accurately measure what happens to soil as temperatures increase, we hope to study the potential effects of soil carbon fluctuations within a changing environment.”

Gordon Bonan of the National Center for Atmospheric Research also contributed to the study, which was supported by National Science Foundation grants AGS-1020767 and EF-0928388 and the U.S. Department of Energy.

About the University of California, Irvine: Located in coastal Orange County, near a thriving high-tech hub in one of the nation’s safest cities, UC Irvine was founded in 1965. One of only 62 members of the Association of American Universities, it’s ranked first among U.S. universities under 50 years old by the London-based Times Higher Education. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Michael Drake since 2005, UC Irvine has more than 28,000 students and offers 192 degree programs. It’s Orange County’s second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/experts. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Andrea Burgess | EurekAlert!
Further information:
http://www.uci.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>