Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI-led team develops more accurate model of climate change’s effect on soil

02.08.2013
It accounts for how in-ground carbon is affected by bacteria and fungi

Scientists from UC Irvine and the National Center for Atmospheric Research have developed a new computer model to measure global warming’s effect on soil worldwide that accounts for how bacteria and fungi in soil control carbon.

They found that soil outcomes based on their microbial model were more reliable than those forecast by traditional models. Study results appear online in Nature Climate Change.

While standard models project modest carbon losses with global warming, the microbial models generate two novel scenarios: One is that soil around the world will accumulate carbon if microbial growth declines with higher temperatures. The second assumes that microbial growth increases with global warming, resulting in large soil carbon losses, meaning much more carbon will be released into the atmosphere.

“The microbial soil model is extremely important to understanding the balance of carbon in the soil versus the atmosphere and how carbon mass in soil is affected by these bacteria and fungi,” said the study’s senior author, Steven Allison, an associate professor of ecology & evolutionary biology and Earth system science at UC Irvine. “Our hope is that this new soil model will be applied to the global Earth system models to better predict overall climate change.”

The researchers also discovered that in cases of increased carbon input to soil (such as carbon dioxide or nutrient fertilization), microbes actually released the added carbon to the atmosphere, while traditional models indicate storage of the additional carbon. This, they said, is further evidence that the Earth system models should incorporate microbial impact on soil to more accurately project climate change ramifications.

“In our microbial model, we directly simulate how the activity of organisms like bacteria and fungi control the storage and losses of soil carbon,” said Will Wieder, a postdoctoral scientist with the National Center for Atmospheric Research in Boulder, Colo. “Now that we can more accurately measure what happens to soil as temperatures increase, we hope to study the potential effects of soil carbon fluctuations within a changing environment.”

Gordon Bonan of the National Center for Atmospheric Research also contributed to the study, which was supported by National Science Foundation grants AGS-1020767 and EF-0928388 and the U.S. Department of Energy.

About the University of California, Irvine: Located in coastal Orange County, near a thriving high-tech hub in one of the nation’s safest cities, UC Irvine was founded in 1965. One of only 62 members of the Association of American Universities, it’s ranked first among U.S. universities under 50 years old by the London-based Times Higher Education. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Michael Drake since 2005, UC Irvine has more than 28,000 students and offers 192 degree programs. It’s Orange County’s second-largest employer, contributing $4.3 billion annually to the local economy.

Media access: UC Irvine maintains an online directory of faculty available as experts to the media at today.uci.edu/experts. Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

Andrea Burgess | EurekAlert!
Further information:
http://www.uci.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>