Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.S. Southwest Expected to Dry Further as Climate Warms

26.01.2010
Based on a study of seasonal rainfall variations in the desert Southwest between 56,000 and 11,000 years ago as recorded in cave stalagmites, geoscientist Stephen Burns of the University of Massachusetts Amherst, with colleagues at the University of New Mexico, suggest the rapidly growing Southwest could become even more arid as global temperatures rise. Their findings are published in this week’s Nature Geosciences and are corroborated by another study presented in the same issue.

Burns is an expert in reading past climate data from the ratio of oxygen isotopes found in calcite, in speleothems—stalagmites, stalactites and other water-deposited cave features. The ratios indicate seasonal precipitation levels. Burns says data from this study covering approximately 45,000 years agree with modern evidence that the polar jet stream shifts northward in response to climate warming. Further, when the polar jet stream retreats toward the pole, winter precipitation in the Southwest decreases, reducing recharge to underground aquifers.

“We believe this cycle is controlled by the position of the polar jet stream, and that lower moisture levels reach the Southwest from the Pacific Ocean when the climate overall is warmer. Likewise, in periods when the Northern hemisphere’s climate is cooler, the polar jet stream sinks southward and winter rains increase in the desert Southwest, probably in response to advancing glaciers in Northern latitudes,” he says.

Speleothem records collected by Burns and colleagues in New Mexico for this National Science Foundation-supported study are among the first long, high-resolution records of rainfall ever collected for the region.

For such studies, the researchers collect speleothems, in this case stalagmite slices a few inches long from a cave in New Mexico. Speleothems are formed over tens of thousands of years by water seeping through cracks in bedrock and dissolving calcite and aragonite. Depending on temperature, carbon dioxide level and other cave factors, these mineral deposits can precipitate out as stalagmites, stalactites, ribbons, domes or straws.

Analysis of radioactive isotopes and stable oxygen isotopes in the calcite indicate past rainfall over many centuries. “We then try to determine what caused the observed variations at various timescales, from just a few years up to tens of thousands,” Burns says. For the current work, they compared the record with baseline data from Greenland ice cores and with speleothem data from a cave in China, halfway around the world. “This helps to show that the pattern extends across the entire Northern hemisphere,” says Burns.

This relatively new method of oxygen isotope analysis from calcite sampled from ancient speleothems is practiced by only a few research teams worldwide, but it offers more chronological control and is more precise than previous methods that used lake bed sediment records. However, some have questioned its reproducibility, Burns acknowledges. That’s why it was a very pleasant surprise when he and colleagues learned that without any prearrangement between research teams, another team is reporting very similar conclusions in the same journal issue this week, based on speleothem data from a different cave in the Southwest, but using a different laboratory for isotope analyses.

This coincidental but key validation by a completely separate investigating team should go a long way to answer doubts about the reproducibility of climate records from speleothem analysis, says Burns. “Results from our two groups reproduce each other incredibly well, which is a quite exciting and satisfying validation of the overall method.”

Stephen Burns
413-545-0142
sburns@geo.umass.edu

Stephen Burns | Newswise Science News
Further information:
http://www.umass.edu

Further reports about: Burns Climate change Dry Northern hemisphere Pacific Ocean Southwest Warms oxygen isotope

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>