Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twentieth-century warming in Lake Tanganyika is unprecedented

18.05.2010
Warming in last century threatens one of Africa's largest inland fisheries

Lake Tanganyika's surface waters are currently warmer than at any time in the previous 1,500 years, a University of Arizona researcher and his colleagues report online in Nature Geoscience.

The rise in temperature during the 20th century is driving a decline in the productivity of the lake, which hosts the second-largest inland fishery in Africa.

"People throughout south-central Africa depend on the fish from Lake Tanganyika as a crucial source of protein," said study co-author Andrew S. Cohen, a UA professor of geosciences. "This resource is likely threatened by the lake's unprecedented warming since the late 19th century and the associated loss of lake productivity."

This is the first detailed record of temperature and its impacts on a tropical African ecosystem that allows scientists to compare the last 100 years with the previous 1,400 years, Cohen said.

The team attributes the lake's increased temperature and the decreased productivity during the 20th century to human-caused global warming.

"We've got a global phenomenon driving something local that has a huge potential impact on the people that live in the region and on the animals that live in the lake," he said.

The annual catch of the Lake Tanganyika fishery is estimated at about 198,000 tons per year, more than 20 times greater than the U.S. commercial fishery in the Great Lakes, he said. The nations of Burundi, Tanzania, Zambia and the Democratic Republic of Congo border the lake, which is the longest lake in the world and the second deepest.

The surface waters of Lake Tanganyika are the most biologically productive part of the lake. For the 1,400 years before 1900, those waters were no warmer than 75.7 F (24.3 degrees C). Since 1900, the lake's surface waters warmed 3 degrees F, reaching 78.8 degrees F (26 degrees C) in 2003, the date of the researchers' last measurement.

The researchers used sediment cores from the lake bed to reconstruct the 1,500-year history of the lake. The scientists analyzed the cores for chemicals produced by microbes and left in the sediments to determine the lake's past temperature and productivity.

Because sediment is deposited in the lake in annual layers, the cores provide a detailed record of Lake Tanganyika's past temperatures and productivity and of the regional wildfires.

The instrument record of lake temperatures from the 20th century agrees with the temperature analyses from the cores, Cohen said.

The cores were extracted as part of the UA's Nyanza Project, a research training program that brought together U.S. and African scientists and students to study tropical lakes. The National Science Foundation funded the project.

"A big part of our mandate for the Nyanza Project was looking at the interconnectivity between climate, human activity, resources and biodiversity," said Cohen, who directed the multi-year project.

Lake Tanganyika and similar tropical lakes are divided into two general levels. Most of the fish and other organisms live in the upper 300 feet (about 100 meters). At depths below that, the lake waters contain less and less oxygen. Below approximately 600 feet, the lake water, although nutrient-rich, has no oxygen and fish cannot live there.

During the region's windy season, the winds make the lake's surface waters slosh back and forth, mixing some of the deep water with the upper layers. This annual mixing resupplies the lake's food web with nutrients and drives the lake's productivity cycle, Cohen said.

However, as Lake Tanganyika warms, the upper waters of the lake become less dense. Therefore, stronger winds are required to churn the lake waters enough to mix the deeper waters with the upper layer. As a result, the upper layers of the lake are becoming increasingly nutrient-poor, reducing the lake's productivity.

In addition, warmer water contains less dissolved oxygen, reducing the quality of the habitat for some fish species.

Other lakes in Africa are showing similar effects to those the team found in Lake Tanganyika, he said.

The finding has implications for lakes in more temperate climates.

"Increasingly, lakes in the U.S. are warming and they're behaving more like these African lakes," Cohen said. "There's a potential for learning a lot about where we're going by seeing where those lakes already are."

The team's article, "Late twentieth-century warming in Lake Tanganyika unprecedented since AD 500," will be published in the June issue of Nature Geoscience. Cohen's co-authors on the paper are first author Jessica E. Tierney of Brown University in Providence, R.I.; Marc T. Mayes, Natacha Meyer and James M. Russell, also at Brown University; Christopher Johnson, a former University of Arizona student now at the University of California, Los Angeles; and Peter W. Swarzenski of the U.S. Geological Survey in Santa Cruz, Calif. The National Science Foundation funded the research.

Andrew S. Cohen
520-621-4691
cohen@email.arizona.edu
Related Web sites: Andrew S. Cohen http://www.geo.arizona.edu/web/Cohen/AC_page.html

UA Department of Geosciences http://www.geo.arizona.edu/

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>