Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tsunami airglow signature could lead to early detection system

14.07.2011
Researchers at the University of Illinois have become the first to record an airglow signature in the upper atmosphere produced by a tsunami using a camera system based in Maui, Hawaii.

Airglow waves captured by the Illinois imaging system over Hawaii. The red line represents the location of the ocean-level tsunami at the time of the image.


Airglow waves captured by the Illinois imaging system over Hawaii. The red line represents the location of the ocean-level tsunami at the time of the image.

The signature, caused by the March 11 earthquake that devastated Japan, was observed in an airglow layer 250 kilometers above the earth’s surface. It preceded the tsunami by one hour, suggesting that the technology could be used as an early-warning system in the future. The findings were recently published in the peer-reviewed Geophysical Research Letters.

The observation confirms a theory developed in the 1970s that the signature of tsunamis could be observed in the upper atmosphere, specifically the ionosphere. But until now, it had only been demonstrated using radio signals broadcast by satellites.

“Imaging the response using the airglow is much more difficult because the window of opportunity for making the observations is so narrow, and had never been achieved before,” said Jonathan Makela, an associate professor of electrical and computer engineering and researcher in the Coordinated Science Laboratory. “Our camera happened to be in the right place at the right time.”

Tsunamis can generate appreciable wave amplitudes in the upper atmosphere – in this case, the airglow layer. As a tsunami moves across the ocean, it produces atmospheric gravity waves forced by centimeter-level surface undulations. The amplitude of the waves can reach several kilometers where the neutral atmosphere coexists with the plasma in the ionosphere, causing perturbations that can be imaged.

On the night of the tsunami, conditions above Hawaii for viewing the airglow signature were optimal. It was approaching dawn (nearly 2:00 a.m. local time) with no sun, moon or clouds obstructing the view of the night sky.

Along with graduate student Thomas Gehrels, Makela analyzed the images and was able to isolate specific wave periods and orientations. In collaboration with researchers at the Institut de Physique du Globe de Paris, CEA-DAM-DIF in France, Instituto Nacional de Pesquisais Espaciais (INPE) in Brazil, Cornell University in Ithaca, NY, and NOVELTIS in France, the researchers found that the wave properties matched those in the ocean-level tsunami measurements, confirming that the pattern originated from the tsunami. The team also cross-checked their data against theoretical models and measurements made using GPS receivers.

Jonathan MakelaMakela believes that camera systems could be a significant aid in creating an early warning system for tsunamis. Currently, scientists rely on ocean-based buoys and models to track and predict the path of a tsunami. Previous upper atmospheric measurements of the tsunami signature relied on GPS measurements, which are limited by the number of data points that can be obtained, making it difficult to create an image. It would take more than 1,000 GPS receivers to capture comparable data to that of one camera system. In addition, some areas, such as Hawaii, don’t have enough landmass to accumulate the number of GPS units it would take to image horizon to horizon.

In contrast, one camera can image the entire sky. However, the sun, moon and clouds can limit the utility of camera measurements from the ground. By flying a camera system on a geo-stationary satellite in space, scientists would be able to avoid these limitations while simultaneously imaging a much larger region of the earth.

To create a reliable system, Makela says that scientists would have to develop algorithms that could analyze and filter data in real-time. And the best solution would also include a network of ground-based cameras and GPS receivers working with the satellite-based system to combine the individual strengths of each measurement technique.

“This is a reminder of how interconnected our environment it,” Makela said. “This technique provides a powerful new tool to study the coupling of the ocean and atmosphere and how tsunamis propagate across the open ocean.”

Contact: Jonathan Makela, Department of Electrical and Computer Engineering, 217/265-9470.

Writer: Kim Gudeman, Coordinated Science Laboratory.

Jonathan J. Makela | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>