Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical storms endure over wet land, fizzle over dry

28.08.2009
If it has already rained, it's going to continue to pour, according to a Purdue University study of how ocean-origin storms behave when they come ashore.

More than 30 years of monsoon data from India showed that ground moisture where the storms make landfall is a major indicator of what the storm will do from there. If the ground is wet, the storm is likely to sustain, while dry conditions should calm the storm.

"Once a storm comes overland, it was unclear whether it would stall, accelerate or fizzle out," said Dev Niyogi, Indiana state climatologist and associate professor of agronomy and earth and atmospheric sciences. "We found that whether a storm becomes more intense or causes heavy rains could depend on the land conditions - something we'd not considered. Thus far we've looked at these storms based mainly on ocean conditions or upper atmosphere."

Niyogi said tropical storms gain their strength from warm ocean water evaporation.

"The same phenomenon - the evaporation from the ocean that sustains the storms - could be the same phenomenon that sustains that storm over land with moisture in the soil," he said. "The storm will have more moisture and energy available over wet soil than dry."

Niyogi's team's findings were published in the August edition of the journal Geophysical Research Letters.

Storm data fed into a model showed that higher levels of ground moisture would sustain Indian monsoon depressions. The model's prediction was proven when compared to ground conditions for 125 Indian monsoons over 33 years, where storms sustained when the ground was wet at landfall.

Knowing the sustainability of a storm could lead to better predictions on flooding and damage inland before a monsoon or a hurricane makes landfall.

"We think the physics is such that we could see similar results more broadly, such as in the United States," Niyogi said.

The National Science Foundation and NASA funded the research. The Purdue led-team also consisted of researchers from the National Center for Atmospheric Research, NASA-GSFC/ESSIC, the University of Georgia, the Indian Space Research Organization and the Indian Institute of Technology Delhi.

Niyogi said the next step is to use the model and ground moisture data to test these theories for hurricanes in the United States.

Abstract on the research in this release is available at: http://news.uns.purdue.edu/x/2009b/090826NiyogiMonsoons.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>