Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Sea Temperatures Influence Melting in Antarctica

07.12.2011
Accelerated melting of two fast-moving outlet glaciers that drain Antarctic ice into the Amundsen Sea Embayment is likely the result, in part, of an increase in sea-surface temperatures in the tropical Pacific Ocean, according to new University of Washington research.

Higher-than-normal sea-level pressure north of the Amundsen Sea sets up westerly winds that push surface water away from the glaciers and allow warmer deep water to rise to the surface under the edges of the glaciers, said Eric Steig, a UW professor of Earth and space sciences.

“This part of Antarctica is affected by what’s happening on the rest of the planet, in particular the tropical Pacific,” he said.

The research involves the Pine Island and Thwaites glaciers on the West Antarctic Ice Sheet, two of the five largest glaciers in Antarctica. Those two glaciers are important because they drain a large portion of the ice sheet. As they melt from below, they also gain speed, draining the ice sheet faster and contributing to sea level rise. Eventually that could lead to global sea level rise of as much as 6 feet, though that would take hundreds to thousands of years, Steig said.

NASA scientists recently documented that a section of the Pine Island Glacier the size of New York City had begun breaking off into a huge iceberg. Steig noted that such an event is normal and scientists were fortunate to be on hand to record it on film. Neither that event nor the new UW findings clearly link thinning Antarctic ice to human causes.

But Steig’s research shows that unusual winds in this area are linked to changes far away, in the tropical Pacific Ocean. Warmer-than-usual sea-surface temperatures, especially in the central tropics, lead to changes in atmospheric circulation that influence conditions near the Antarctic coast line. Recent decades have been exceptionally warm in the tropics, he said, and to whatever extent unusual conditions in the tropical Pacific can be attributed to human activities, unusual conditions in Antarctica also can be attributed to those causes.

He noted that sea-surface temperatures in the tropical Pacific last showed significant warming in the 1940s, and the impact in the Amundsen Sea area then was probably comparable to what has been observed recently. That suggests that the 1940s tropical warming could have started the changes in the Amundsen Sea ice shelves that are being observed now, he said.

Steig presents his findings Tuesday (Dec. 6) at the fall meeting of the American Geophysical Union in San Francisco. In another presentation Wednesday, he will discuss evidence from ice cores on the history of Antarctic climate in the last century.

He emphasized that natural variations in tropical sea-surface temperatures associated with the El Niño Southern Oscillation play a significant role. The 1990s were notably different from all other decades in the tropics, with two major El Niño events offset by only minor La Niña events.

“The point is that if you want to predict what’s going to happen in the next fifty, one-hundred, one-thousand years in Antarctica, you have to pay attention to what’s happening elsewhere,” he said. “The tropics are where there is a large source of uncertainty.”

Other researchers involved with the work are Qinghua Ding and David Battisti of the UW and Adrian Jenkins of the British Antarctic Survey. The research is supported by grants from the National Science Foundation, the United Kingdom’s Natural Environment Research Council and the UW Quaternary Research Center.

For more information, contact Steig at 206-685-3715, 206-543-6327 or steig@uw.edu.

To view a NASA video of the crack in the Pine Island Glacier ice shelf, see: http://bit.ly/uPFruW

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>