Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical rainfall patterns varied through time

05.02.2013
Research provides deeper understanding of drought cycles in Central America

Historic lake sediment dug up by University of Pittsburgh researchers reveals that oceanic influences on rainfall in Central America have varied over the last 2,000 years, highlighting the fluctuating influence the Atlantic and Pacific Oceans have on precipitation.

The Pitt study, published in the February print edition of the peer-reviewed journal Geology, shows that factors currently producing drier climates in Central America actually resulted in wetter conditions a few hundred years ago, providing a deeper understanding of drought cycles in that region of the Western Hemisphere.

The researchers analyzed lake sediment that had accumulated for 1,400 years in Lago El Gancho in Nicaragua to reconstruct climate patterns in the Central American country during the Medieval Climate Anomaly—a warm period roughly spanning the years 950 to 1250—and a 500-year, global cold spell known as the Little Ice Age that began around 1350.

Because of the extreme disparity in climatic conditions they represent, these two time periods contain clues for scientists looking to better understand climate change, said lead study author Nathan Stansell, who conducted the research as a graduate student in Pitt's Sedimentology and Sediment Geochemistry Labs led by Mark Abbott, Pitt associate professor of geology. Stansell earned his master's and PhD degrees in geology and planetary science from Pitt's Kenneth P. Dietrich School of Arts and Sciences in 2005 and 2009, respectively.

"We have a decent understanding of how those systems affect today's Central American climate, but we wanted to know if those systems operated in similar ways in the past," said Stansell, now a research fellow at The Ohio State University. "We found that the long-term trends we inferred from the data are not entirely consistent with our modern-day observations."

Sandwiched between the Atlantic and Pacific oceans, Lago El Gancho, which is near the city of Granada, became the research team's choice for examining the variability and influence of the North Atlantic Oscillation—a phenomenon that is the dominant mode of climate variability in the North Atlantic region. The researchers also examined the El Niño/La Niña Southern Oscillation pattern—a quasi-periodic climate pattern occurring every three to seven years or so in the Pacific Ocean.

Using layered mud found in the sediment cores collected in 2004, the team reconstructed past climatic conditions using the radiocarbon ages of charcoal to date the layers. They examined the calcium-carbonate shells of the ostracod crustaceans, small organisms living in lakes, to measure the oxygen isotope ratios commonly studied to identify wet and dry climate cycles.

The sediments revealed a dramatic change in climatic conditions brought on by the North Atlantic Oscillation. In our modern age, when the North Atlantic is in its "positive" phase, atmospheric pressure anomalies prevent colder Arctic air from plunging south into the lower latitudes of North America, leading to drier conditions in Nicaragua, while negative phases lead to wetter climates.

However, the Pitt team found that during the positive-phase Medieval Climate Anomaly, wetter conditions prevailed alongside the North Atlantic and La Niña patterns. Then, 150 years later, the Little Ice Age chilled the region off, holding a negative North Atlantic phase, and an abrupt shift toward persistently drier conditions occurred. The impact of the El Niño/La Niña Southern Oscillation pattern did not change between the two periods.

How or why did this happen? "There are any number of possible scenarios," Stansell says. "Most likely, the Northern Hemisphere temperatures affected the atmospheric pressure across the North Atlantic while in a positive phase. When the Oscillation became negative, it would have pushed precipitation to the south, leaving it drier in Nicaragua.

"The main idea here is that the ability of the Atlantic Ocean to exert its influence on precipitation patterns in Central America varied in the past," Stansell adds.

Climatic Future

Scientists are currently working towards a better understanding of how precipitation patterns will change under a range of different scenarios.

Modern-day observations show drier conditions during positive whirls. However, Stansell's geologic record of the Medieval Climate Anomaly and Little Ice Age shows the opposite. Therefore, he said, the use of a geologic record to determine current conditions needs to be considered carefully.

"What this tells us is that more studies like ours need to be done in order to better predict how the tropical hydrologic cycle will operate in the future," said Stansell. "Our specific work in the tropics is to better develop that longer-term perspective of how the North Atlantic pressure anomalies play a key role in this region's water-resource availability."

Stansell stresses the importance of combining geologic evidence with modeling scenarios to reconstruct patterns of the past to more accurately discern a climatic future.

"If we can't accurately reconstruct past conditions in our modeling scenarios, then we can't rely on those models to predict future changes," Stansell said.

In addition to Stansell and Abbott, the research team for this study included Pitt alumni Michael Rubinov (A&S '06), Manuel Roman-Lacayo (A&S '06), and Byron A. Steinman (A&S '11G).

The paper, "Lacustrine stable isotope record of precipitation changes in Nicaragua during the Little Ice Age and Medieval Climate Anomaly," was published online by Geology on Nov. 13 in addition to being published in the journal's February 2013 print edition. The work was supported by grants from the Geological Society of America and the University of Pittsburgh Center for Latin American Studies.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>