Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Atlantic sees weaker trade winds and more rainfall

07.02.2011
Earth's global temperature has been rising gradually over the last decades, but the warming has not been the same everywhere. Scientists are therefore trying to pin down how the warming has affected regional climates because that is what really matters to people, and to adaptation and mitigation strategies. Their efforts, however, had hit a roadblock because the necessary observations of the winds over the oceans were biased.

Developing a new method to remove the bias, Hiroki Tokinaga and Shang-Ping Xie at the International Pacific Research Center, University of Hawaii at Manoa, found that their corrected observations show the trade winds in the tropical Atlantic have weakened and the pattern of ocean surface temperature has changed. As a result, the equatorial Amazon and the Guinea Coast are seeing more rainfall and the Sahel less. The findings are published online in the February 6, 2011, issue of Nature Geoscience.

The raw observations of winds over the ocean suggest that the winds have grown stronger during the last 60 years. The trend is, however, largely due to a change in the placement of the anemometers, the instruments measuring wind speed. Ships are the main source of wind data over the ocean, and ships have increased in height and so has the anemometer placement. Tokinaga and Xie corrected this wind bias using wind-wave heights. The tropical Atlantic has three major ship routes along which ships provide meteorological data. Applying their new correction technique to observations along these routes from 1950 to 2009 together with other observations, they found the trade winds in the tropical Atlantic had weakened significantly during this period.

Although ocean surface temperature in the tropical Atlantic has risen, the pattern has changed and with it the climate. The cold tongue of water that stretches out from the eastern tropical Atlantic coast has warmed more than the western part of the basin. At the same time, the weakened trade winds have resulted in less upwelling of cold water and nutrients in the eastern tropical Atlantic. These latter changes could impact marine life.

Accompanying these changes in wind and ocean temperature is a very significant increase in rainfall, not only over the ocean but also over adjacent land areas such as the equatorial coastal regions of the Amazon and the Guinea Coast. For example, the August rainfall at Ibadan, one of the largest cities in Nigeria, has increased by 79 mm/month from 1950 to 1998, which is a whopping 93% increase over the long-term average for 1900�. The study also suggests that the year-to-year variations of ocean temperature and rainfall have weakened during recent decades, implying fewer extreme events.

Tokinaga and Xie reason that the pattern of ocean warming and trade-wind changes are caused by the asymmetric reduction in surface solar radiation due to man-produced aerosols, the reduction affecting the Northern more than the Southern Hemisphere. If aerosol emissions decrease over the next decades, the tropical Atlantic climate may experience yet another shift as greenhouse gas forcing increases. Such a shift in the patterns of climate change (i.e., precipitation and sea level) will have important impacts on the socio-economics of regions surrounding the tropical Atlantic. For example, "If the year-to-year variability is to recover in the future, the resulting increase in climate extremes would add burdens to an ecosystem and to a society already stressed by global warming," said Tokinaga.

Historical observations of accurate winds are gravely lacking over the World's oceans. This new robust and physically consistent set of observations by the IPRC team is valuable for improving computer models and evaluating model projections of climate change under further global warming.

This research was supported by NOAA, the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), NASA, and NSF, which sponsor research at the International Pacific Research Center.

Citation: Tokinaga, H., and S.-P. Xie, 2011: Weakening of the equatorial Atlantic cold tongue over the past six decades. Nature Geoscience, http://dx.doi.org/10.1038/NGEO1078.

Researcher Contacts:
Hiroki Tokinaga, (808) 956-5920; email: tokinaga@hawaii.edu
Shang-Ping Xie, (808) 956-6758; email: xie@hawaii.edu
IPRC Media Contact: Gisela Speidel, (808) 956-9252; email: gspeidel@hawaii.edu. IPRC/SOEST, University of Hawaii at Manoa, 1680 East-West Rd., POST Building 401, Honolulu, HI 96822.

The International Pacific Research Center (IPRC) of the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawai`i at Mânoa, is a climate research center founded to gain greater understanding of the climate system and the nature and causes of climate variation in the Asia-Pacific region and how global climate changes may affect the region. Established under the "U.S.-Japan Common Agenda for Cooperation in Global Perspective" in October 1997, the IPRC is a collaborative effort between agencies in Japan and the United States.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>