Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Atlantic sees weaker trade winds and more rainfall

07.02.2011
Earth's global temperature has been rising gradually over the last decades, but the warming has not been the same everywhere. Scientists are therefore trying to pin down how the warming has affected regional climates because that is what really matters to people, and to adaptation and mitigation strategies. Their efforts, however, had hit a roadblock because the necessary observations of the winds over the oceans were biased.

Developing a new method to remove the bias, Hiroki Tokinaga and Shang-Ping Xie at the International Pacific Research Center, University of Hawaii at Manoa, found that their corrected observations show the trade winds in the tropical Atlantic have weakened and the pattern of ocean surface temperature has changed. As a result, the equatorial Amazon and the Guinea Coast are seeing more rainfall and the Sahel less. The findings are published online in the February 6, 2011, issue of Nature Geoscience.

The raw observations of winds over the ocean suggest that the winds have grown stronger during the last 60 years. The trend is, however, largely due to a change in the placement of the anemometers, the instruments measuring wind speed. Ships are the main source of wind data over the ocean, and ships have increased in height and so has the anemometer placement. Tokinaga and Xie corrected this wind bias using wind-wave heights. The tropical Atlantic has three major ship routes along which ships provide meteorological data. Applying their new correction technique to observations along these routes from 1950 to 2009 together with other observations, they found the trade winds in the tropical Atlantic had weakened significantly during this period.

Although ocean surface temperature in the tropical Atlantic has risen, the pattern has changed and with it the climate. The cold tongue of water that stretches out from the eastern tropical Atlantic coast has warmed more than the western part of the basin. At the same time, the weakened trade winds have resulted in less upwelling of cold water and nutrients in the eastern tropical Atlantic. These latter changes could impact marine life.

Accompanying these changes in wind and ocean temperature is a very significant increase in rainfall, not only over the ocean but also over adjacent land areas such as the equatorial coastal regions of the Amazon and the Guinea Coast. For example, the August rainfall at Ibadan, one of the largest cities in Nigeria, has increased by 79 mm/month from 1950 to 1998, which is a whopping 93% increase over the long-term average for 1900�. The study also suggests that the year-to-year variations of ocean temperature and rainfall have weakened during recent decades, implying fewer extreme events.

Tokinaga and Xie reason that the pattern of ocean warming and trade-wind changes are caused by the asymmetric reduction in surface solar radiation due to man-produced aerosols, the reduction affecting the Northern more than the Southern Hemisphere. If aerosol emissions decrease over the next decades, the tropical Atlantic climate may experience yet another shift as greenhouse gas forcing increases. Such a shift in the patterns of climate change (i.e., precipitation and sea level) will have important impacts on the socio-economics of regions surrounding the tropical Atlantic. For example, "If the year-to-year variability is to recover in the future, the resulting increase in climate extremes would add burdens to an ecosystem and to a society already stressed by global warming," said Tokinaga.

Historical observations of accurate winds are gravely lacking over the World's oceans. This new robust and physically consistent set of observations by the IPRC team is valuable for improving computer models and evaluating model projections of climate change under further global warming.

This research was supported by NOAA, the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), NASA, and NSF, which sponsor research at the International Pacific Research Center.

Citation: Tokinaga, H., and S.-P. Xie, 2011: Weakening of the equatorial Atlantic cold tongue over the past six decades. Nature Geoscience, http://dx.doi.org/10.1038/NGEO1078.

Researcher Contacts:
Hiroki Tokinaga, (808) 956-5920; email: tokinaga@hawaii.edu
Shang-Ping Xie, (808) 956-6758; email: xie@hawaii.edu
IPRC Media Contact: Gisela Speidel, (808) 956-9252; email: gspeidel@hawaii.edu. IPRC/SOEST, University of Hawaii at Manoa, 1680 East-West Rd., POST Building 401, Honolulu, HI 96822.

The International Pacific Research Center (IPRC) of the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawai`i at Mânoa, is a climate research center founded to gain greater understanding of the climate system and the nature and causes of climate variation in the Asia-Pacific region and how global climate changes may affect the region. Established under the "U.S.-Japan Common Agenda for Cooperation in Global Perspective" in October 1997, the IPRC is a collaborative effort between agencies in Japan and the United States.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>