Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Shuttle Exhaust Reveals More Information About Atmospheric Winds

29.08.2012
On July 8, 2011 the Space Shuttle Atlantis launched for the very last time. On that historic day, as the world watched its last ascent up into orbit and commentators discussed the program's contributions to space flight and scientific research over 20 years, the shuttle helped spawn one last experiment. As the shuttle reached a height of about 70 miles over the east coast of the U.S., it released – as it always did shortly after launch – 350 tons of water vapor exhaust.

As the plume of vapor spread and floated on air currents high in Earth's atmosphere, it crossed through the observation paths of seven separate sets of instruments. A group of scientists, reporting in online in the Journal of Geophysical Research on August 27, 2012, tracked the plume to learn more about the airflow in the Mesosphere and Lower Thermosphere (MLT) -- a region that is typically quite hard to study.


After the Space Shuttle Atlantis launched for the final time at 11:29 AM (EDT) on July 8, 2011, scientist tracked water vapor in its exhaust on its travels throughout the upper atmosphere. Credit: NASA Photo/Houston Chronicle, Smiley N. Pool

The team found the water vapor spread much faster than expected and that within 21 hours much of it collected near the arctic where it formed unusually bright high altitude clouds of a kind known as polar mesospheric clouds (PMCs). Such information will help improve global circulation models of air movement in the upper atmosphere, and also help with ongoing studies of PMCs.

"Polar mesospheric clouds are the highest clouds on Earth," says space scientist Michael Stevens at the Naval Research Laboratory, Washington, who is first author on the paper. "They shine brightly when the sun is just below the horizon and typically occur over polar regions in the summer. There is some evidence that they are increasing in number and people want to know if this is indicative of climate change or something else that we don't understand."

Since they shine at night, PMCs are also known as noctilucent clouds, and they can serve as an indicator not just of temperature changes, but also of how currents and waves move high in Earth's atmosphere. A visible cloud of water vapor from something like the shuttle also offers a serendipitous way to observe such motions in the upper winds.

"The plume from the shuttle becomes a ready-made experiment to observe the movement in the atmosphere," says Charles Jackman, a scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. who is the project scientist for a NASA mission called Aeronomy Ice in the Mesosphere (AIM) that specifically observes PMCs. "What this team found is interesting since the plume moved so quickly to the pole, indicating that the winds appear much stronger at those latitudes than was thought."

To track the plume across the sky, the scientists collated seven sets of observations, including data from AIM. The first two sets of instruments to see the plume were on a NASA spacecraft called TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics). Next the plume was viewed through the Sub-Millimeter Radiometer on the Swedish Odin satellite. When the plume reached higher latitudes, it was picked up by the ground-based Microwave Spectrometer at the Institute of Atmospheric Physics in Kühlungsborn, Germany as well as an identical ground-based water vapor instrument called cWASPAM1 at the Arctic Lidar Observatory for Middle Atmospheric Research (ALOMAR) in Andenes, Norway. The plume collated into its final shape over the arctic, as a new, extremely bright PMC on July 9, 2011 and there, it could be observed from above by the AIM satellite flying overhead, and from below by another instrument at ALOMAR called the RMR lidar.

Over the course of the plume's travels, these observations showed it spreading horizontally over a distance of some 2000 to 2500 miles. Those parts that drifted into the high latitudes near the North Pole formed ice particles which settled into layers of PMCs down at about 55 miles above Earth’s surface. The speed with which the plume arrived at the arctic was a surprise.

"The speed of the movement in the upper atmosphere gives us new information for our models," says Stevens. "As you get higher up in the atmosphere, we just don't have as many measurements of wind speeds or temperatures. The take-away message here is that we need to improve the models of that region."

Since observations of PMCs may be connected to global climate, it's important to subtract out sporadic effects such as shuttle exhaust from other consistent, long-term effects.

"One of AIM's big goals is to find out how much of the cloud's behavior is naturally induced versus man-made," says Jackman. "This last shuttle launch will help researchers separate the shuttle exhaust from the rest of the observations."

Indeed, the AIM observations showed a clear difference between typical PMCs and this shuttle-made one. Normally smaller particles exist at the top, with larger ones at the bottom. The shuttle plume PMC showed a reversed configuration, with larger particles at the top, and smaller at the bottom – offering a way to separate out such clouds in the historical record.

For more information about NASA’s AIM mission, visit:
www.nasa.gov/aim
For more information about NASA’s TIMED mission, visit:
http://www.timed.jhuapl.edu/WWW/index.php
Karen C. Fox
NASA Goddard Space Flight Center, Greenbelt, MD.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/aim/news/shuttle-exhaust.html

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>