Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny diamonds on Santa Rosa Island give evidence of cosmic impact

Nanosized diamonds found just a few meters below the surface of Santa Rosa Island off the coast of Santa Barbara provide strong evidence of a cosmic impact event in North America approximately 12,900 years ago, according to a new study by scientists. Their hypothesis holds that fragments of a comet struck across North America at that time.
The research, published this week in the Proceedings of the National Academy of Sciences (PNAS), was led by James Kennett, professor emeritus at UC Santa Barbara, and Douglas J. Kennett, first author, of the University of Oregon. The two are a father-son team. They were joined by 15 other researchers.

"The pygmy mammoth, the tiny island version of the North American mammoth, died off at this time," said James Kennett. "Since it coincides with this event, we suggest it is related." He explained that this site, with its layer containing hexagonal diamonds, is also associated with other types of diamonds and with dramatic environmental changes and wildfires. They are part of a sedimentary layer known as the Younger Dryas Boundary.
"There was a major event 12,900 years ago," said James Kennett. "It is hard to explain this assemblage of materials without a cosmic impact event and associated extensive wildfires. This hypothesis fits with the abrupt climatic cooling as recorded in ocean-drilled sediments beneath the Santa Barbara Channel. The cooling resulted when dust from the high-pressure, high-temperature, multiple impacts was lofted into the atmosphere, causing a dramatic drop in solar radiation."

The tiny diamonds were buried below four meters of sediment and they correspond with the disappearance of the Clovis culture –– the first well-established and distributed North American peoples. An estimated 35 types of mammals and 19 types of birds also became extinct in North America about this time.

"The type of diamond we have found –– lonsdaleite –– is a shock-synthesized mineral defined by its hexagonal crystalline structure," said Douglas Kennett, associate professor of anthropology at the University of Oregon. "It forms under very high temperatures and pressures consistent with a cosmic impact. These diamonds have only been found thus far in meteorites and impact craters on earth, and appear to be the strongest indicator yet of a significant cosmic impact [during Clovis]."

The diamonds were found in association with soot, which forms in extremely hot fires, and they suggest associated regional wildfires, based on nearby environmental records. Such soot and diamonds are rare in the geological record. They were found in sediment dating to massive asteroid impacts 65 million years ago in a layer widely known as the K-T Boundary, known to be associated with the extinction of dinosaurs and many other types of organisms.

James Kennett, former director of the Marine Science Institute at UCSB, is considered by some of his peers to be the "father" of marine geology and paleoceanography. The native of New Zealand notes that the sedimentary layers beneath the Santa Barbara Channel provide a unique window on the history of the world's climate and ocean changes. The area is one of the best locations in the world for this type of geological research.

Douglas Kennett received his bachelor's, master's, and Ph.D in anthropology at UCSB.

Co-authors on the PNAS paper are Jon M. Erlandson and Brendan J. Culleton, of the University of Oregon; Allen West of GeoScience Consulting in Arizona; G. James West of UC Davis; Ted E. Bunch and James H. Wittke, of Northern Arizona University; Shane S. Que Hee of UCLA; John R. Johnson of the Santa Barbara Museum of Natural History; Chris Mercer of UCSB and National Institute of Materials Science in Japan; Feng Shen of the FEI Company; Thomas W. Stafford of Stafford Research Inc. of Colorado; Wendy S. Wolbach and Adrienne Stich, of DePaul University in Chicago; and James C. Weaver of UC Riverside.

The National Science Foundation provided primary funding for this research.

Gail Gallessich | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>