Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Arctic is facing a decline in sea ice that might equal the negative record of 2012


Data collected by the CryoSat-2 satellite reveal large amounts of thin ice that are unlikely to survive the summer

Sea ice physicists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), are anticipating that the sea ice cover in the Arctic Ocean this summer may shrink to the record low of 2012. The scientists made this projection after evaluating current satellite data about the thickness of the ice cover.

The data show that the arctic sea ice was already extraordinarily thin in the summer of 2015. Comparably little new ice formed during the past winter. Today Dr Marcel Nicolaus, expert on sea ice, has presented these findings at a press conference during the annual General Assembly of the European Geosciences Union in Vienna.

Predicting the summer extent of the arctic sea ice several months in advance is one of the great challenges facing contemporary polar research. The reason: until the end of the melting season the fate of the ice is ultimately determined by the wind conditions and air and water temperatures during the summer months. Foundations are laid during the preceding winter, however.

This spring, they are as disheartening as they were in the negative record year of 2012. Back then, the sea ice surface of the Artic shrunk to a record low of 3.4 million square kilometres.

“In many regions of the Arctic, new ice only formed very slowly due to the particularly warm winter. If we compare the ice thickness map of the previous winter with that of 2012, we can see that the current ice conditions are similar to those of the spring of 2012 – in some places, the ice is even thinner,” Dr Marcel Nicolaus, sea ice physicist at AWI, said today at a press conference during the EGU General Assembly in Vienna.

Together with his AWI colleague Dr Stefan Hendricks, they evaluated the sea ice thickness measurements taken over the past five winters by the CyroSat-2 satellite for their sea ice projection. Seven autonomous snow buoys, which the AWI researchers had placed on floes last autumn, supplied additional important clues.

In addition to the thickness of the snow cover on top of the sea ice, the buoys also measure the air temperature and air pressure. A comparison of their temperature data with the AWI long-term measurements taken on Spitsbergen has shown that the temperature in the central Arctic in February 2016 exceeded average temperatures by up to 8 °C.

Buoy data show: the sea ice did not melt during the winter, but it grew slowly

Contrary to a report published by US researchers, this warmth did not result in the thinning of the sea ice cover in some regions over the course of the winter. “According to our buoy data from the spring, the warm winter air was not sufficient to melt the layer of snow covering the sea ice, let alone the ice itself,” Marcel Nicolaus explains. During the past winter, the growth of the arctic sea ice was significantly slower than the scientists had expected.

In previously ice-rich areas such as the Beaufort Gyre off the Alaskan coast or the region south of Spitsbergen, the sea ice is considerably thinner now than it normally is during the spring. “While the landfast ice north of Alaska usually has a thickness of 1.5 metres, our US colleagues are currently reporting measurements of less than one metre. Such thin ice will not survive the summer sun for long,” Stefan Hendricks, AWI sea ice physicist, explained.

Large amounts of thick pack ice will be carried away by Arctic sea currents before the autumn

Examining the CyroSat-2 sea ice thickness map for this spring, Stefan Hendricks further explained: “The Transpolar Drift Stream, a well-known current in the Arctic Ocean, will be carrying the majority of the thick, perennial ice currently located off the northern coasts of Greenland and Canada through the Fram Strait to the North Atlantic.

These thick floes will then be followed by thin ice, which melts faster in the summer. Everything suggests that the overall volume of the arctic sea ice will be decreasing considerably over the course of the coming summer. If the weather conditions turn out to be unfavourable, we might even be facing a new record low,” Stefan Hendricks said.

According to the AWI scientists, the extent of the ice loss will be great enough to undo all growth recorded over the relatively cold winters of 2013 and 2014. AWI researchers observed a considerable decrease in the thickness of the sea ice as early as the late summer of 2015, even though the overall ice covered area of the September minimum ultimately exceeded the record low of 2012 by approximately one million square kilometres. The unusually warm winter has thus contributed to the likely continuation of the dramatic decline of the Arctic sea ice throughout 2016.

The sea ice physicists of AWI regularly report on the state of the Arctic and Antarctic sea ice on the online portal, All CryoSat-2 ice thickness maps and the measurement series taken by the snow buoys are also available from the portal.

Notes for Editors/Information about the press conference:

AWI sea ice physicist Dr Marcel Nicolaus will be presenting the current research findings outlined above on Thursday, 21 April 2016, at a press conference during the EGU General Assembly in Vienna. The press conference will take place from 12–1 pm at the pressroom of the Austria Centre in Vienna and will be streamed live. Journalists watching remotely can ask questions using the chat below the stream. More information is available from the EGU media website: .

Printable photographs and maps about the current sea ice distribution can be found at:

Further information about sea ice research at the Alfred Wegener Institute is available on our dedicated website:

Your scientific contacts at the Alfred Wegener Institute:
• Dr Marcel Nicolaus (Tel: +49 (0)471 4831 - 2905, e-mail: marcel.nicolaus(at) He is available for discussion until Tuesday, 19 April 2016. To arrange an interview during the EGU meeting, please send him a brief e-mail. He will get back to you.
• Dr Stefan Hendricks (Tel.: +49 (0)471 4831 - 1874, e-mail: stefan.hendricks(at) ).

Your contact in the Communications and Media Department of the Alfred Wegener Institute is Sina Löschke (Tel.: +49 (0)471 4831 - 2008, e-mail: medien(at) She will help you get in touch with both scientists.

The Alfred Wegener Institute researches in the Arctic, the Antarctic and oceans in the central and high latitudes. It coordinates polar research in Germany and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic for the international science community. The Alfred Wegener Institute is one of the 18 research centres belonging to the Helmholtz Association, which is Germany's largest scientific organisation.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>