Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Arctic is facing a decline in sea ice that might equal the negative record of 2012

21.04.2016

Data collected by the CryoSat-2 satellite reveal large amounts of thin ice that are unlikely to survive the summer

Sea ice physicists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), are anticipating that the sea ice cover in the Arctic Ocean this summer may shrink to the record low of 2012. The scientists made this projection after evaluating current satellite data about the thickness of the ice cover.

The data show that the arctic sea ice was already extraordinarily thin in the summer of 2015. Comparably little new ice formed during the past winter. Today Dr Marcel Nicolaus, expert on sea ice, has presented these findings at a press conference during the annual General Assembly of the European Geosciences Union in Vienna.

Predicting the summer extent of the arctic sea ice several months in advance is one of the great challenges facing contemporary polar research. The reason: until the end of the melting season the fate of the ice is ultimately determined by the wind conditions and air and water temperatures during the summer months. Foundations are laid during the preceding winter, however.

This spring, they are as disheartening as they were in the negative record year of 2012. Back then, the sea ice surface of the Artic shrunk to a record low of 3.4 million square kilometres.

“In many regions of the Arctic, new ice only formed very slowly due to the particularly warm winter. If we compare the ice thickness map of the previous winter with that of 2012, we can see that the current ice conditions are similar to those of the spring of 2012 – in some places, the ice is even thinner,” Dr Marcel Nicolaus, sea ice physicist at AWI, said today at a press conference during the EGU General Assembly in Vienna.

Together with his AWI colleague Dr Stefan Hendricks, they evaluated the sea ice thickness measurements taken over the past five winters by the CyroSat-2 satellite for their sea ice projection. Seven autonomous snow buoys, which the AWI researchers had placed on floes last autumn, supplied additional important clues.

In addition to the thickness of the snow cover on top of the sea ice, the buoys also measure the air temperature and air pressure. A comparison of their temperature data with the AWI long-term measurements taken on Spitsbergen has shown that the temperature in the central Arctic in February 2016 exceeded average temperatures by up to 8 °C.

Buoy data show: the sea ice did not melt during the winter, but it grew slowly

Contrary to a report published by US researchers, this warmth did not result in the thinning of the sea ice cover in some regions over the course of the winter. “According to our buoy data from the spring, the warm winter air was not sufficient to melt the layer of snow covering the sea ice, let alone the ice itself,” Marcel Nicolaus explains. During the past winter, the growth of the arctic sea ice was significantly slower than the scientists had expected.

In previously ice-rich areas such as the Beaufort Gyre off the Alaskan coast or the region south of Spitsbergen, the sea ice is considerably thinner now than it normally is during the spring. “While the landfast ice north of Alaska usually has a thickness of 1.5 metres, our US colleagues are currently reporting measurements of less than one metre. Such thin ice will not survive the summer sun for long,” Stefan Hendricks, AWI sea ice physicist, explained.

Large amounts of thick pack ice will be carried away by Arctic sea currents before the autumn

Examining the CyroSat-2 sea ice thickness map for this spring, Stefan Hendricks further explained: “The Transpolar Drift Stream, a well-known current in the Arctic Ocean, will be carrying the majority of the thick, perennial ice currently located off the northern coasts of Greenland and Canada through the Fram Strait to the North Atlantic.

These thick floes will then be followed by thin ice, which melts faster in the summer. Everything suggests that the overall volume of the arctic sea ice will be decreasing considerably over the course of the coming summer. If the weather conditions turn out to be unfavourable, we might even be facing a new record low,” Stefan Hendricks said.

According to the AWI scientists, the extent of the ice loss will be great enough to undo all growth recorded over the relatively cold winters of 2013 and 2014. AWI researchers observed a considerable decrease in the thickness of the sea ice as early as the late summer of 2015, even though the overall ice covered area of the September minimum ultimately exceeded the record low of 2012 by approximately one million square kilometres. The unusually warm winter has thus contributed to the likely continuation of the dramatic decline of the Arctic sea ice throughout 2016.

The sea ice physicists of AWI regularly report on the state of the Arctic and Antarctic sea ice on the online portal, http://www.seaiceportal.de. All CryoSat-2 ice thickness maps and the measurement series taken by the snow buoys are also available from the portal.

Notes for Editors/Information about the press conference:

AWI sea ice physicist Dr Marcel Nicolaus will be presenting the current research findings outlined above on Thursday, 21 April 2016, at a press conference during the EGU General Assembly in Vienna. The press conference will take place from 12–1 pm at the pressroom of the Austria Centre in Vienna and will be streamed live. Journalists watching remotely can ask questions using the chat below the stream. More information is available from the EGU media website: http://media.egu.eu/press-conferences/ .

Printable photographs and maps about the current sea ice distribution can be found at: https://gigamove.rz.rwth-aachen.de/d/id/bgftWLY6DWak4q

Further information about sea ice research at the Alfred Wegener Institute is available on our dedicated website: http://www.awi.de/en/focus/sea-ice.html

Your scientific contacts at the Alfred Wegener Institute:
• Dr Marcel Nicolaus (Tel: +49 (0)471 4831 - 2905, e-mail: marcel.nicolaus(at)awi.de) He is available for discussion until Tuesday, 19 April 2016. To arrange an interview during the EGU meeting, please send him a brief e-mail. He will get back to you.
• Dr Stefan Hendricks (Tel.: +49 (0)471 4831 - 1874, e-mail: stefan.hendricks(at)awi.de ).

Your contact in the Communications and Media Department of the Alfred Wegener Institute is Sina Löschke (Tel.: +49 (0)471 4831 - 2008, e-mail: medien(at)awi.de). She will help you get in touch with both scientists.

The Alfred Wegener Institute researches in the Arctic, the Antarctic and oceans in the central and high latitudes. It coordinates polar research in Germany and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic for the international science community. The Alfred Wegener Institute is one of the 18 research centres belonging to the Helmholtz Association, which is Germany's largest scientific organisation.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>