Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M professor helping to unravel causes of Ice Age extinctions

03.11.2011
Did climate change or humans cause the extinctions of the large-bodied Ice Age mammals (commonly called megafauna) such as the woolly rhinoceros and woolly mammoth?

Scientists have for years debated the reasons behind the Ice Age mass extinctions, which caused the loss of a third of the large mammals in Eurasia and two thirds of the large mammals in North America, and now, an inter-disciplinary team from more than 40 universities around the world led by Professor Eske Willerslev and his group from the Centre for GeoGenetics, University of Copenhagen, have tried to answer the contentious question in one of the biggest studies of its kind ever.

The study by the team, which includes two Texas A&M University professors, is published online today in the journal Nature and reveals dramatically different responses of Ice Age species to climate change and human impact. Using ancient DNA, species distribution models and the human fossil record, the findings indicate that neither climate nor humans alone can account for the Ice Age mass extinctions.

"Our findings put a final end to the single-cause theories of these extinctions," says Willserslev. "Our data suggest care should be taken in making generalizations regarding past and present species extinctions; the relative impacts of climate change and human encroachment on species extinctions really depend on which species we're looking at."

The study reports that climate alone caused extinctions of woolly rhinoceros and musk ox in Eurasia, but a combination of climate and humans played a part in the loss of bison in Siberia and wild horse. While the reindeer remain relatively unaffected by any of these factors, the reasons causes of the extinction of the mammoth remain unresolved.

The study also reports that climate change has been intrinsically linked with major population size changes over the past 50,000 years, supporting the view that populations of many species will decline in the future owing to climate change and habitat loss. Finally, the authors find no clear pattern in their data distinguishing species that went extinct from species that survived.

Eline Lorenzen, professor at the University of Copenhagen and lead author of the study, said, "The fact that we couldn't pinpoint what patterns characterize extinct species - despite the large and varying amount of data analyzed - suggests that it will be challenging for experts to predict how existing mammals will respond to future global climate change. Which species will go extinct and which will survive?

"The bottom line is that we really don't know why some of these ancient species became extinct," adds Ted Goebel, researcher in the Department of Anthropology at Texas A&M and affiliated with the Center for the Study of First Americans.

"Now we can better predict what might happen to animals in the future as climate change occurs. What happens to species when their ranges are significantly diminished, and why do some animals adapt successfully while others become extinct? We now have a genetic roadmap to follow in our efforts to protect sensitive animal populations - especially in drastically impacted regions like the Arctic."

openhagen Contacts

Prof. Director Eske Willerslev
Centre for GeoGenetics
University of Copenhagen
Øster Voldgade 5-7DK-1350, Denmark
Phone: 45-35321309/ 45-28751309
E-mail: ewillerslev@gmail.com
ewillerslev@snm.ku.dk,
http://geogenetics.ku.dk/
Dr. Eline Lorenzen
Centre for GeoGenetics
University of Copenhagen
Oester Voldgade 5-7 DK-1350,
Denmark Office: 45-35-321225
Mobile: 45-26-701024
Email: elinelorenzen@gmail.com
edlorenzen@snm.ku.dk
Texas A&M Contact
Keith Randall
News & Information Services
979-845-4644
keith-randall@tamu.edu
Ted Goebel
Department of Anthropology
979-862-4544
goebel@tamu.edu
About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $630 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

Uncovering decades of questionable investments

18.01.2018 | Business and Finance

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>