Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M professor helping to unravel causes of Ice Age extinctions

03.11.2011
Did climate change or humans cause the extinctions of the large-bodied Ice Age mammals (commonly called megafauna) such as the woolly rhinoceros and woolly mammoth?

Scientists have for years debated the reasons behind the Ice Age mass extinctions, which caused the loss of a third of the large mammals in Eurasia and two thirds of the large mammals in North America, and now, an inter-disciplinary team from more than 40 universities around the world led by Professor Eske Willerslev and his group from the Centre for GeoGenetics, University of Copenhagen, have tried to answer the contentious question in one of the biggest studies of its kind ever.

The study by the team, which includes two Texas A&M University professors, is published online today in the journal Nature and reveals dramatically different responses of Ice Age species to climate change and human impact. Using ancient DNA, species distribution models and the human fossil record, the findings indicate that neither climate nor humans alone can account for the Ice Age mass extinctions.

"Our findings put a final end to the single-cause theories of these extinctions," says Willserslev. "Our data suggest care should be taken in making generalizations regarding past and present species extinctions; the relative impacts of climate change and human encroachment on species extinctions really depend on which species we're looking at."

The study reports that climate alone caused extinctions of woolly rhinoceros and musk ox in Eurasia, but a combination of climate and humans played a part in the loss of bison in Siberia and wild horse. While the reindeer remain relatively unaffected by any of these factors, the reasons causes of the extinction of the mammoth remain unresolved.

The study also reports that climate change has been intrinsically linked with major population size changes over the past 50,000 years, supporting the view that populations of many species will decline in the future owing to climate change and habitat loss. Finally, the authors find no clear pattern in their data distinguishing species that went extinct from species that survived.

Eline Lorenzen, professor at the University of Copenhagen and lead author of the study, said, "The fact that we couldn't pinpoint what patterns characterize extinct species - despite the large and varying amount of data analyzed - suggests that it will be challenging for experts to predict how existing mammals will respond to future global climate change. Which species will go extinct and which will survive?

"The bottom line is that we really don't know why some of these ancient species became extinct," adds Ted Goebel, researcher in the Department of Anthropology at Texas A&M and affiliated with the Center for the Study of First Americans.

"Now we can better predict what might happen to animals in the future as climate change occurs. What happens to species when their ranges are significantly diminished, and why do some animals adapt successfully while others become extinct? We now have a genetic roadmap to follow in our efforts to protect sensitive animal populations - especially in drastically impacted regions like the Arctic."

openhagen Contacts

Prof. Director Eske Willerslev
Centre for GeoGenetics
University of Copenhagen
Øster Voldgade 5-7DK-1350, Denmark
Phone: 45-35321309/ 45-28751309
E-mail: ewillerslev@gmail.com
ewillerslev@snm.ku.dk,
http://geogenetics.ku.dk/
Dr. Eline Lorenzen
Centre for GeoGenetics
University of Copenhagen
Oester Voldgade 5-7 DK-1350,
Denmark Office: 45-35-321225
Mobile: 45-26-701024
Email: elinelorenzen@gmail.com
edlorenzen@snm.ku.dk
Texas A&M Contact
Keith Randall
News & Information Services
979-845-4644
keith-randall@tamu.edu
Ted Goebel
Department of Anthropology
979-862-4544
goebel@tamu.edu
About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $630 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>