Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Targeted investments in climate science could present enormous economic savings for the UK and Europe

Targeted investments in climate science could lead to major benefits in reducing the costs of adapting to a changing climate, according to new research published by scientists from the UK’s National Centre for Atmospheric Science (NCAS).
Published in the scientific journal, the Bulletin for the American Meteorological Society, the study shows that investments made now, can lead to as much as 10-20% improvement in climate predictions for the UK and Europe in the coming decades, and up to 20% across the rest of the globe.

This is good news for businesses and policy-makers currently seeking predictions to aid planning for adaptation to climate change in the coming years, and for whom such improvements could present enormous economic savings: uncertainty in climate forecasts means that adaptation measures have to be designed with greater resilience, making them more expensive.

The results came after the researchers, based at the Walker Institute, University of Reading, used data from a suite of state-of-the-art climate models to identify the main causes of uncertainty in predictions of temperature change over different space and time scales. Although this type of study had previously been done on a global scale, this is the first time it has been attempted on regional scales (2000 km) across the globe.

Results showed that for all regions for the next four decades, the main uncertainties in climate predictions are dominated by: (i) differences between the climate models themselves eg in the way they represent different atmospheric processes; (ii) the natural variability of the climate (ie changes in the climate not brought about by human influences). Fortunately, both types of uncertainty are reducible through investment and progress in climate science.

An important issue for planners and funding agencies, therefore, is how climate science can best deliver improvements in such predictions, and so reduce the costs of adaptation to a changing climate.

Dr Hawkins, lead scientist on this project said: “A certain amount of climate change is inevitable, and we will need to adapt. This work has highlighted the need for a debate about where best to target investment in climate science and to consider the return we get in terms of better climate forecasts and reduced adaptation costs.”

“Our work suggests that investments in ocean observations, for example, and their use in setting the initial conditions of climate models and in verifying predictions, could give some of the best returns in improved models and climate forecasts for the next 5-50 years. It is not until the 2050s that the dominant uncertainty is in the unknown future emissions of greenhouse gases. ”

Issues such as these will also be debated at the World Climate Conference-3 in Geneva at the end of this month, where the focus will be on climate predictions and information for decision-making. Senior scientists, including Professor Rowan Sutton, Director of Climate Research for NCAS and a co-author on the study, will be attending to provide scientific advice and expertise, and stakeholders and government representatives will all meet with the aim to create a global framework to link scientific advances in climate prediction with the needs of users such as farmers and water managers. The conference is only the third of its kind in the last 30 years.

| NCAScomms
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>