Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T. Rex Body Plan Debuted in Puny Raptorex

21.09.2009
A 9-foot dinosaur from northeastern China had evolved all the hallmark anatomical features of Tyrannosaurus rex at least 125 million years ago.

University of Chicago paleontologist Paul Sereno and five co-authors describe the newly discovered dinosaur in the Sept. 17 Science Express, advanced online edition of the journal Science.

Raptorex shows that tyrannosaur design evolved at “punk size,” said Sereno, a National Geographic Explorer-in-Residence, “basically our bodyweight. And that’s pretty staggering, because there’s no other example that I can think of where an animal has been so finely designed at about 100th the size that it would eventually become.”

Raptorex displays all the hallmarks of its famous descendant, Tyrannosaurus rex, including a large head compared to its torso, tiny arms and lanky feet well-suited for running. The Raptorex brain cast also displayed enlarged olfactory bulbs—as in T. rex—indicating a highly developed sense of smell.

“It’s really stolen from tyrannosaurids all the fire of the group,” Sereno said. All that Raptorex left for its descendants is “a suite of detailed features largely related to getting bigger.”

Sereno marvels at the scalability of the tyrannosaur body type, which when sized up 90 million years ago completely dominated the predatory eco-niche in both Asia and North America until the great extinction 65 million years ago at the end of the Cretaceous Period.

“On other continents like Africa, you have as many as three large predators living in the same areas that split among them the job of eating meat,” he said. But in Africa, the allosaurs never went extinct, as they did in North America, possibly presenting an evolutionary opportunity for Raptorex. “We have no evidence that it was a competitive takeover,” said Sereno, ”because we have never found large tyrannosaurs and allosaurs together.”

Henry Kriegstein, a private fossil collector, brought the nearly complete Raptorex skeleton to Sereno’s attention after buying it from a vendor. After Sereno and colleagues finish a more detailed study of the fossil, it will be returned to a museum in Inner Mongolia, the place where the fossil was illicitly excavated.

Citation: Paul C. Sereno, Lin Tan, Stephen L. Brusatte, Henry J. Kriegstein, Xijin Zhao and Karen Cloward, “Tyrannosaurid Skeletal Design First Evolved at Small Body Size,” early online edition of Science, Sept. 17, 2009.

Funding sources: The Whitten-Newman Foundation and the National Geographic Society.

On TV: Raptorex will appear in the world premiere special BIZARRE DINOS, on the National Geographic Channel at 8 p.m. ET/PT Sunday, Oct. 11.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>