Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New System Can Warn of Tsunamis Within Minutes

07.03.2011
Seismologists have developed a new system that could be used to warn future populations of an impending tsunami only minutes after the initial earthquake.

The system, known as RTerg, could help reduce the death toll by giving local residents valuable time to move to safer ground. The study by researchers at the Georgia Institute of Technology appears in the March 5 edition of Geophysical Research Letters.

“We developed a system that, in real time, successfully identified the magnitude 7.8 2010 Sumatran earthquake as a rare and destructive tsunami earthquake. Using this system, we could in the future warn local populations, thus minimizing the death toll from tsunamis,” said Andrew Newman, assistant professor in the School of Earth and Atmospheric Sciences.

Typically, a large subduction zone earthquake ruptures at a rate near 3 kilometers/second and anywhere from 20 kilometers to 50 kilometers below the earth’s surface. Because of the depth, vertical deformation of the crust is horizontally smoothed, causing the size of uplift to remain rather small. When these earthquakes occur in the ocean, the resulting waves may only measure about 20 centimeters high for a magnitude 7.8 event.

Tsunami earthquakes, however, are a rare class of earthquakes that rupture more slowly, at 1-1.5 kilometers /second and propagate up to the sea floor, near the trench. This makes the vertical uplift much larger, resulting in nearby wave heights up to 10- 20 meters in nearby coastal environments. Such is the case of the Sumatran earthquake with reported wave heights of up to 17 meters, causing a death toll of approximately 430 people.

“Because tsunami earthquakes rupture in a shallow environment, we can't simply use a measurement of magnitude to determine which ones will create large waves,” said Newman. “When they occur, people often don't feel that they're significant, if they even feel them in the first place, because they seem like they're an order of magnitude smaller than they actually are.”

Tsunami earthquakes typically rupture more slowly, last longer and are less efficient at radiating energy, so when RTerg uses its algorithmic tools to find a quake matching these attributes, it sends an alert to the National Oceanic and Atmospheric Administration's Pacific Tsunami Warning Center as well as the United States Geological Survey's National Earthquake Information Center.

Here's how it works. Usually within four minutes, RTerg gets a notification from one of the tsunami warning centers that an earthquake has occurred. This notice gives the system the quake's location, depth and approximate magnitude. If the earthquake is determined to be of magnitude 6.5 or higher, it takes about a minute to request and receive data from around 150 seismic stations around the world. Once it collects this data, it uses its algorithm to run through every second of the rupture and determine the incremental growth of energy and ascertain whether the quake was a tsunami earthquake.

Newman and his team have used seismology readings from previous tsunami earthquakes, such as the one in Nicaragua in 1992 and the one that hit Java in 2006, but the Sumatran event was the first tsunami quake that occurred when RTerg was online in real time. With that quake, the system identified the event as a potential tsunami earthquake after eight and a half minutes, and sent a notification out shortly thereafter. When applied to a production warning system, the tool will be most valuable, since analysts are available 24/7 to evaluate the algorithm results.

“For most tsunami earthquakes, inundation of the coastal environment doesn't occur until about 30-40 minutes after the quake. So we'll have about 20-30 minutes to get our information to an automatic warning system, or to the authorities,” said Newman. “This gives us a tangible amount of time to get people out of the way.”

Currently, Newman and his team are working to test and implement a technique for RTerg that could shave another minute or more from the warning time. In addition, they are planning to rewrite the algorithm so that it can be used at all U.S. and international warning centers.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>