Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight Stimulates Release of Climate-Warming Gas From Melting Arctic Permafrost

13.02.2013
Ancient carbon trapped in Arctic permafrost is extremely sensitive to sunlight and, if exposed to the surface when long-frozen soils melt and collapse, can release climate-warming carbon dioxide gas into the atmosphere much faster than previously thought.

University of Michigan ecologist and aquatic biogeochemist George Kling and his colleagues studied places in Arctic Alaska where permafrost is melting and is causing the overlying land surface to collapse, forming erosional holes and landslides and exposing long-buried soils to sunlight.

They found that sunlight increases bacterial conversion of exposed soil carbon into carbon dioxide gas by at least 40 percent compared to carbon that remains in the dark. The team, led by Rose Cory of the University of North Carolina, reported its findings in an article to be published online Feb. 11 in the Proceedings of the National Academy of Sciences.

“Until now, we didn’t really know how reactive this ancient permafrost carbon would be — whether it would be converted into heat-trapping gases quickly or not,” said Kling, a professor in the U-M Department of Ecology and Evolutionary Biology. EEB graduate student Jason Dobkowski is a co-author of the paper.

“What we can say now is that regardless of how fast the thawing of the Arctic permafrost occurs, the conversion of this soil carbon to carbon dioxide and its release into the atmosphere will be faster than we previously thought,” Kling said. “That means permafrost carbon is potentially a huge factor that will help determine how fast the Earth warms.”

Tremendous stores of organic carbon have been frozen in Arctic permafrost soils for thousands of years. If thawed and released as carbon dioxide gas, this vast carbon repository has the potential to double the amount of the heat-trapping greenhouse gas in the atmosphere on a timescale similar to humanity’s inputs of carbon dioxide due to the burning of fossil fuels.

That creates the potential for a positive feedback: As the Earth warms due to the human-caused release of heat-trapping gases into the atmosphere, frozen Arctic soils also warm, thaw and release more carbon dioxide. The added carbon dioxide accelerates Earth’s warming, which further accelerates the thawing of Arctic soils and the release of even more carbon dioxide.

Recent climate change has increased soil temperatures in the Arctic and has thawed large areas of permafrost. Just how much permafrost will thaw in the future and how fast the carbon dioxide will be released is a topic of heated debate among climate scientists.

Already, the melting of ground ice is causing land-surface subsidence features called thermokarst failures. A thermokarst failure is generated when ice-rich, permanently frozen soils are warmed and thawed. As the ice melts, the soil collapses and either creates an erosional hole in the tundra or — if the slope is steep enough — a landslide.

Thermokarst failures change the trajectory of the debate on the role of the Arctic in global climate, according to Kling and his colleagues. The unanticipated outcome of the study reported in PNAS is that soil carbon will not be thawed and degraded directly in the soils. Instead, the carbon will be mixed up and exposed to sunlight as the land surface fails.

Sunlight — and especially ultraviolet radiation, the wavelengths that cause sunburn — can degrade the organic soil carbon directly to carbon dioxide gas, and sunlight can also alter the carbon to make it a better food for bacteria. When bacteria feed on this carbon, they respire it to carbon dioxide, much the same way that people respire carbon in food and exhale carbon dioxide as a byproduct.

“Whether UV light exposure will enhance or retard the conversion of newly exposed carbon from permafrost soils has been, until recently, anybody’s guess,” said University of North Carolina’s Cory, the study’s lead author. “In this research, we provide the first evidence that the respiration of previously frozen soil carbon will be amplified by reactions with sunlight and their effects on bacteria.”

“We know that in a warmer world there will be more of these thermokarst failures, and that will lead to more of this ancient frozen carbon being exposed to surface conditions,” Kling said. “While we can’t say how fast this Arctic carbon will feed back into the global carbon cycle and accelerate climate warming on Earth, the fact that it will be exposed to light means that it will happen faster than we previously thought.”

The researchers analyzed water from seven thermokarst failures near Toolik Lake, Alaska, as well as 27 other undisturbed sites nearby.

In addition to Cory, Kling and Dobkowski, Byron Crump of the University of Maryland was a co-author of the PNAS paper. The research was supported by several grants from the National Science Foundation.

More information about Kling is available at http://www.lsa.umich.edu/eeb/directory/faculty/gwk/

EDITORS: Images are available at
http://www.ns.umich.edu/Releases/2013/Feb13/perma.html

Jim Erickson | Newswise
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>