Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subseafloor sediment in South Pacific Gyre

24.06.2009
Biomass, metabolic activity much lower than at previously explored sites

An international oceanographic research expedition to the middle of the South Pacific Gyre – a site that is as far from continents as it is possible to go on Earth's surface – found so few organisms beneath the seafloor that it may be the least inhabited sediment ever explored for evidence of life.

Yet since half of the world's ocean is composed of similar gyres, biomass and metabolic activity may be equally low in sediment throughout much of the world.

Those are among the results of a study led by University of Rhode Island oceanographer Steven D'Hondt published in the online edition of the Proceedings of the National Academy of Sciences during the week of June 22. Other URI members of the research team were Marine Reearch Scientist Robert Pockalny and Oceanography Professors Arthur Spivack and David Smith.

"We wanted to know what life is like in subseafloor sediment where you have the least amount of organic matter produced in the overlying water column," said D'Hondt, a professor at the URI Graduate School of Oceanography. "So we deliberately went where no one ever goes to compare it with sites previously studied."

Gyres are semi-still areas in the middle of the oceans where there is little wind, little current, and very little upwelling of deep water, so the water is clear and contains few nutrients. The South Pacific Gyre is the largest of Earth's gyres, encompassing an area twice the size of North America. D'Hondt describes its center as "the deadest spot in the ocean."

Because the region is so far from terrestrial sources of sediment and so few organisms live in its water, its sediment accumulates extraordinarily slowly – as few as 8 centimeters per million years.

In 2007, the international team of scientists and students collected nearly 100 cores that reached up to 8 meters below the seafloor of the South Pacific Gyre and measured the number of living cells and the amount of respiration in the sediment. Their cell counts were three to four orders of magnitude lower than have been found at similar depths outside of the gyres, and the rate of respiration was one to three orders of magnitude lower.

Equally surprising was their finding that the subseafloor community is aerobic, unlike all other previously explored sites.

"In most places, oxygen is gone just a few centimeters below the seafloor, but we found that oxygen goes many meters below the seafloor at these sites, and possibly all the way through the sediment to the underlying igneous rock," D'Hondt said.

In addition, D'Hondt said that the burial rate of organic matter was so low in the sediment that the principle food source for the microorganisms living there may be hydrogen released by the radioactive splitting of water due to the natural decay of elements in the sediment.

"As you get deeper, this hydrogen probably becomes a more important food source than buried organic matter," D'Hondt said. "And when you get deep enough, it might be the only food available. The next step in our research is to test if that is the case."

The research expedition was funded by the Ocean Drilling Program of the U.S. National Science Foundation.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>