Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides a new method to measure the energy of a lightning strike

03.08.2016

By investigating 'fossilized' sand cylinders made by lightning strikes, sometimes thousands of years old, a University of South Florida professor provides a unique history of lightning and the energy contained in a single strike

Florida, often recognized as the "lightning capital of the United States," is a great place to study the amount of energy released by a lightning strike. Just ask University of South Florida School of Geosciences Associate Professor Matthew Pasek and his colleague Marc Hurst of Independent Geological Sciences, Inc. who have developed a unique method to measure the amount energy expended by a bolt of cloud-to-ground lightning.


When lightning strikes the sand, it may generate a cylindrical tube of glass, called a fulgurite. This fulgurite has a diameter of approximately 1.2 centimeters.

Credit: Dr. Matthew Pasek/University of South Florida

According to Pasek, one of the more difficult things to measure is the amount of energy in a lightning strike. While atmospheric physicists can approximate lightning bolt energy by measuring the electrical current and temperature of bolts as they occur, the numbers are usually approximations.

The team of Pasek and Hurst is the first to investigate the energy in lightning strikes by using geology "after-the-fact" research, rather than measuring energy during a strike. By conducting this lightning strike "archaeology," the researchers were able to measure the energy in a bolt of lightning that struck Florida sand thousands of years ago.

The results of their analysis were recently published in the journal Scientific Reports.

"When lightning strikes the sand, it may generate a cylindrical tube of glass called a fulgurite, explained Pasek. "The structure of the fulgurite, created by the energy and heat in a lightning strike, can tell us a lot about the nature of the strike, particularly about the amount of energy in a single bolt of lightning."

The team collected more than 250 fulgurites - both recent and ancient - from sand mines in Polk County, Fla., at a site that is believed to have recorded thousands of years of lightning strikes, providing a way to measure the lightning strike history of what is today called the I-4 Corridor, a region near Tampa and Orlando. They analyzed the properties of the fulgurites, paying particular attention to the length and circumference of the glass cylinders because the amount energy released is revealed by these dimensions.

"Everyone knows there is a lot of energy in a lightning bolt, but how much?" Pasek explained. "Ours is the first attempt at determining lightning energy distribution from fulgurites and is also the first data set to measure lightning's energy delivery and its potential damage to a solid earth surface."

According to Pasek, the energy released by lightning is measured in megajoules, also expressed as MJ/m.

"For example a single megajoule is equivalent to about 200 food calories, or the energy from leaving a microwave on for 20 minutes to cook food," he explains. "It can also be compared to a 60 watt lightbulb's energy use if left on for about four hours. It's also the same as the kinetic energy a car has traveling about 60 mph." Their research found that the energy produced by a lightning strike peaked at greater than 20MJ/m.

The researchers also found a way to separate the "normal" lightning strikes from the "abnormal."

"While we presented a new method for measuring by using fossilized lightning rocks, we also found - for the first time - that lightning strikes follow something called a 'lognormal trend," explained Pasek. "A lognormal trend shows that the most powerful lightning strike happen more often than would be expected if you made a bell curve of strikes. This means that the big lightning strikes are really big."

According to Pasek, a bolt of lightning can carry extremely high voltage and heat the air temperature around the strike to more 30,000 degrees Kelvin - that's over 53,000 degrees Fahrenheit. When lightning strikes sand, soil, rock or clay, the current flows through the target and heats the material to above its vaporizing level. Rapid cooling produces the fulgurite.

According to Pasek, who is also an expert in astrobiology, geochemistry and cosmochemistry, lightning strikes the Earth about 45 times per second, with 75 to 90 percent of the strikes over land masses.

"About a quarter of these strikes occur from a cloud to the ground, so the fulgurite-forming potential is great, with up to 10 fulgurites formed per second globally," said Pasek.

Their research serves not only to provide a way to measure the immense energy in lightning, but also to help raise awareness of the dangers posed by the potentially deadly bolts.

Media Contact

Dr. Matthew Pasek
mpasek@wtsp.com
813-974-8979

 @USFResearch

http://www.usf.edu/research-innovation/ 

Dr. Matthew Pasek | EurekAlert!

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>