Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretchy Slabs Found in the Deep Earth

30.11.2015

A new study suggests that the common belief that the Earth’s rigid tectonic plates stay strong when they slide under another plate, known as subduction, may not be universal.

Typically during subduction, plates slide down at a constant rate into the warmer, less-dense mantle at a fairly steep angle. However, in a process called flat-slab subduction, the lower plate moves almost horizontally underneath the upper plate.


3D image of the Nazca slab subduction

The research, published in the journal Nature Geoscience, found that the Earth’s largest flat slab, located beneath Peru, where the oceanic Nazca Plate is being subducted under the continental South American Plate, may be relatively weak and deforms easily.

By studying the speed at which seismic waves travel in different directions through the same material, a phenomenon called seismic anisotropy, the researchers found that interior of the Nazca plate had been deformed during subduction.

Lead author of the study, Dr Caroline Eakin, Research Fellow in Ocean and Earth Science at the University of Southampton, said: “The process of consuming old seafloor at subduction zones, where great slabs of oceanic material are swallowed up, drives circulation in the Earth’s interior and keeps the planet going strong.

One of the most crucial but least known aspects of this process is the strength and behavior of oceanic slabs once they sink below the Earth’s surface. Our findings provide some of the first direct evidence that subducted slabs are not only weaker and softer than conventionally envisioned, but also that we can peer inside the slab and directly witness their behavior as they sink.”

When oceanic plates form at mid-ocean ridges, their movement away from the ridge causes olivine (the most abundant mineral in the Earth’s interior) to align with the direction of plate growth. This olivine structure is then ‘frozen’ into the oceanic plate as it travels across the Earth’s surface. The olivine fabric causes the seismic waves to travel at different speeds in different directions, depending on whether or not they are going ‘with the grain’ or ‘against the grain’.

The scientists measured seismic waves at 15 local seismic stations over two and a half years, from 2010 to 2013, and seven further stations located on different continents. They found that the original olivine structure within the slab had vanished and been replaced by a new olivine alignment in an opposing orientation to before.

Dr Eakin said: “The best way to explain this observation is that the slab’s interior must have been stretched or deformed during subduction. This means that slabs are weak enough to deform internally in the upper mantle over time.”

The researchers believe that deformation associated with stretching of the slab as it bends to takes on its flat-slab shape was enough to erase the frozen olivine structure and create a new alignment, which closely follows the contours of the slab bends.

“Imaging Earth’s plates once they have sunk back into the Earth is very difficult,” said Lara Wagner, from the Carnegie Institution for Science and a principal investigator of the PULSE Peruvian project. “It’s very exciting to see results that tell us more about their ultimate fate, and how the materials within them are slowly reworked by the planet’s hot interior. The original fabric in these plates stays stable for so long at the Earth’s surface, that it is eye opening to see how dramatically and quickly that can change,” Lara added.

Contact Information
Glenn Harris
Media Relations Officer
G.Harris@soton.ac.uk
Phone: +44 23 8059 3212

Glenn Harris | newswise
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>