Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretchy Slabs Found in the Deep Earth

30.11.2015

A new study suggests that the common belief that the Earth’s rigid tectonic plates stay strong when they slide under another plate, known as subduction, may not be universal.

Typically during subduction, plates slide down at a constant rate into the warmer, less-dense mantle at a fairly steep angle. However, in a process called flat-slab subduction, the lower plate moves almost horizontally underneath the upper plate.


3D image of the Nazca slab subduction

The research, published in the journal Nature Geoscience, found that the Earth’s largest flat slab, located beneath Peru, where the oceanic Nazca Plate is being subducted under the continental South American Plate, may be relatively weak and deforms easily.

By studying the speed at which seismic waves travel in different directions through the same material, a phenomenon called seismic anisotropy, the researchers found that interior of the Nazca plate had been deformed during subduction.

Lead author of the study, Dr Caroline Eakin, Research Fellow in Ocean and Earth Science at the University of Southampton, said: “The process of consuming old seafloor at subduction zones, where great slabs of oceanic material are swallowed up, drives circulation in the Earth’s interior and keeps the planet going strong.

One of the most crucial but least known aspects of this process is the strength and behavior of oceanic slabs once they sink below the Earth’s surface. Our findings provide some of the first direct evidence that subducted slabs are not only weaker and softer than conventionally envisioned, but also that we can peer inside the slab and directly witness their behavior as they sink.”

When oceanic plates form at mid-ocean ridges, their movement away from the ridge causes olivine (the most abundant mineral in the Earth’s interior) to align with the direction of plate growth. This olivine structure is then ‘frozen’ into the oceanic plate as it travels across the Earth’s surface. The olivine fabric causes the seismic waves to travel at different speeds in different directions, depending on whether or not they are going ‘with the grain’ or ‘against the grain’.

The scientists measured seismic waves at 15 local seismic stations over two and a half years, from 2010 to 2013, and seven further stations located on different continents. They found that the original olivine structure within the slab had vanished and been replaced by a new olivine alignment in an opposing orientation to before.

Dr Eakin said: “The best way to explain this observation is that the slab’s interior must have been stretched or deformed during subduction. This means that slabs are weak enough to deform internally in the upper mantle over time.”

The researchers believe that deformation associated with stretching of the slab as it bends to takes on its flat-slab shape was enough to erase the frozen olivine structure and create a new alignment, which closely follows the contours of the slab bends.

“Imaging Earth’s plates once they have sunk back into the Earth is very difficult,” said Lara Wagner, from the Carnegie Institution for Science and a principal investigator of the PULSE Peruvian project. “It’s very exciting to see results that tell us more about their ultimate fate, and how the materials within them are slowly reworked by the planet’s hot interior. The original fabric in these plates stays stable for so long at the Earth’s surface, that it is eye opening to see how dramatically and quickly that can change,” Lara added.

Contact Information
Glenn Harris
Media Relations Officer
G.Harris@soton.ac.uk
Phone: +44 23 8059 3212

Glenn Harris | newswise
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>