Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar cycle linked to global climate

20.07.2009
Drives events similar to El Niño, La Niña

Establishing a key link between the solar cycle and global climate, research led by scientists at the National Science Foundation (NSF)-funded National Center for Atmospheric Research (NCAR) in Boulder, Colo., shows that maximum solar activity and its aftermath have impacts on Earth that resemble La Niña and El Niño events in the tropical Pacific Ocean.

The research may pave the way toward predictions of temperature and precipitation patterns at certain times during the approximately 11-year solar cycle.

"These results are striking in that they point to a scientifically feasible series of events that link the 11-year solar cycle with ENSO, the tropical Pacific phenomenon that so strongly influences climate variability around the world," says Jay Fein, program director in NSF's Division of Atmospheric Sciences. "The next step is to confirm or dispute these intriguing model results with observational data analyses and targeted new observations."

The total energy reaching Earth from the sun varies by only 0.1 percent across the solar cycle. Scientists have sought for decades to link these ups and downs to natural weather and climate variations and distinguish their subtle effects from the larger pattern of human-caused global warming.

Building on previous work, the NCAR researchers used computer models of global climate and more than a century of ocean temperature to answer longstanding questions about the connection between solar activity and global climate.

The research, published this month in a paper in the Journal of Climate, was funded by NSF, NCAR's sponsor, and by the U.S. Department of Energy.

"We have fleshed out the effects of a new mechanism to understand what happens in the tropical Pacific when there is a maximum of solar activity," says NCAR scientist Gerald Meehl, the paper's lead author. "When the sun's output peaks, it has far-ranging and often subtle impacts on tropical precipitation and on weather systems around much of the world."

The new paper, along with an earlier one by Meehl and colleagues, shows that as the Sun reaches maximum activity, it heats cloud-free parts of the Pacific Ocean enough to increase evaporation, intensify tropical rainfall and the trade winds, and cool the eastern tropical Pacific.

The result of this chain of events is similar to a La Niña event, although the cooling of about 1-2 degrees Fahrenheit is focused further east and is only about half as strong as for a typical La Niña.

Over the following year or two, the La Niña-like pattern triggered by the solar maximum tends to evolve into an El Niño-like pattern, as slow-moving currents replace the cool water over the eastern tropical Pacific with warmer-than-usual water.

Again, the ocean response is only about half as strong as with El Niño.

True La Niña and El Niño events are associated with changes in the temperatures of surface waters of the eastern Pacific Ocean. They can affect weather patterns worldwide.

The paper does not analyze the weather impacts of the solar-driven events. But Meehl and his co-author, Julie Arblaster of both NCAR and the Australian Bureau of Meteorology, found that the solar-driven La Niña tends to cause relatively warm and dry conditions across parts of western North America.

More research will be needed to determine the additional impacts of these events on weather across the world.

"Building on our understanding of the solar cycle, we may be able to connect its influences with weather probabilities in a way that can feed into longer-term predictions, a decade at a time," Meehl says.

Scientists have known for years that long-term solar variations affect certain weather patterns, including droughts and regional temperatures.

But establishing a physical connection between the decadal solar cycle and global climate patterns has proven elusive.

One reason is that only in recent years have computer models been able to realistically simulate the processes associated with tropical Pacific warming and cooling associated with El Niño and La Niña.

With those models now in hand, scientists can reproduce the last century's solar behavior and see how it affects the Pacific.

To tease out these sometimes subtle connections between the sun and Earth, Meehl and his colleagues analyzed sea surface temperatures from 1890 to 2006. They then used two computer models based at NCAR to simulate the response of the oceans to changes in solar output.

They found that, as the sun's output reaches a peak, the small amount of extra sunshine over several years causes a slight increase in local atmospheric heating, especially across parts of the tropical and subtropical Pacific where Sun-blocking clouds are normally scarce.

That small amount of extra heat leads to more evaporation, producing extra water vapor. In turn, the moisture is carried by trade winds to the normally rainy areas of the western tropical Pacific, fueling heavier rains.

As this climatic loop intensifies, the trade winds strengthen. That keeps the eastern Pacific even cooler and drier than usual, producing La Niña-like conditions.

Although this Pacific pattern is produced by the solar maximum, the authors found that its switch to an El Niño-like state is likely triggered by the same kind of processes that normally lead from La Niña to El Niño.

The transition starts when the changes of the strength of the trade winds produce slow-moving off-equatorial pulses known as Rossby waves in the upper ocean, which take about a year to travel back west across the Pacific.

The energy then reflects from the western boundary of the tropical Pacific and ricochets eastward along the equator, deepening the upper layer of water and warming the ocean surface.

As a result, the Pacific experiences an El Niño-like event about two years after solar maximum. The event settles down after about a year, and the system returns to a neutral state.

"El Niño and La Niña seem to have their own separate mechanisms," says Meehl, "but the solar maximum can come along and tilt the probabilities toward a weak La Niña. If the system was heading toward a La Niña anyway," he adds, "it would presumably be a larger one."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>