Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil microbes produce less atmospheric carbon dioxide than expected

27.04.2010
Key players in carbon cycle multiply slowly when overheated

In dark, rich soils on every continent, microbes dealing with the effects of climate change aren't accelerating global warming the way scientists had predicted, a study by researchers at the University of California at Irvine, Colorado State University and Yale University shows.

Results of the study appear in a paper published on-line this week in the journal Nature Geoscience. The work was supported by the National Science Foundation (NSF) and U.S. Department of Energy.

"Microbes continually surprise us in the diverse ways they respond to environmental conditions," said Saran Twombly, program director in NSF's Division of Environmental Biology, which funded the research along with NSF's Advancing Theory in Biology program, part of the Directorate for Biological Sciences Office of Emerging Frontiers.

"Microbes play a central role in ecological processes," said Twombly, "and their responses change our understanding of natural communities in fundamental ways."

Conventional scientific wisdom holds that even a few degrees of human-caused climate warming will shift fungi and bacteria that consume soil-based carbon into overdrive, and that their growth will accelerate the release of carbon dioxide into the atmosphere.

But a research team led by ecologist Steve Allison of UC Irvine took a closer look, and found something different.

While microbial soil decomposition, and resulting carbon dioxide emissions, increase initially, microbes eventually overheat and grow more slowly.

As their numbers decline, they release decreasing amounts of climate-warming greenhouse gases.

"Microbes are the engines that drive carbon cycling in soils," said Allison.

"In a balanced environment, plants store carbon in the soil and microbes use that carbon to grow. Enzymes produced by microbes convert soil carbon into atmospheric carbon dioxide."

A previous study by Mark Bradford of Yale and Matthew Wallenstein of Colorado State found that microbes became less efficient at decomposing soil carbon after several years of experimental warming.

They asked Allison to develop a computer model to test how adaptation of microbes to climate change might affect the carbon cycle.

"The issue we have in predicting whether soil carbon loss will accelerate climate warming is that the microbial processes causing this loss are poorly understood," said Bradford. "More research in this area will help reduce uncertainties in climate prediction."

In the resulting computer model, microbes became less efficient at converting their carbon food source into biomass as climate warmed.

In short, the microbes were not well adapted to a warmer climate. As their growth slowed, so did enzyme production.

"When we developed a model based on the actual biology of soil microbes, we found that soil carbon may not be lost to the atmosphere as the climate warms," Allison said. "Conventional ecosystem models that didn't include enzymes did not make the same predictions."

The next steps include studying more microbes and more ecosystems.

Microbes from a Massachusetts forest inspired this study, then Allison began collecting soil samples from California, Alaska, Maine and Costa Rica.

"Nearly one-third of all soil-based carbon is sequestered in permafrost or Arctic regions, which might respond differently to warming," said Wallenstein, who is researching sites in Greenland and Alaska.

"We need to develop more models to include microbe diversity," Allison said. "But the general principle that's important in our model is the decline of carbon dioxide production after an initial increase."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>