Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small dams on Chinese river harm environment more than expected, study finds

29.05.2013
A fresh look at the environmental impacts of dams on an ecologically diverse and partially protected river in China found that small dams can pose a greater threat to ecosystems and natural landscapes than large dams.

Although large dams are generally considered more harmful than their smaller counterparts, the research team’s surveys of habitat loss and damage at several dam sites on the Nu River and its tributaries in Yunnan Province revealed that, watt-for-watt, the environmental harm from small dams was often greater—sometimes by several orders of magnitude—than from large dams.

Because of undesirable social, environmental, and political implications, the construction of large dams often stirs controversy. Current policies in China and many other nations encourage the growth of the small hydropower sector. But, “small dams have hidden detrimental effects, particularly when effects accumulate” through multiple dam sites, said Kelly Kibler, a water resources engineer who led this study as part of her PhD research while at Oregon State University in Corvallis. “That is one of the main outcomes of this paper, to demonstrate that the perceived absence of negative effects from small hydropower is not always correct.”

She and Desiree D. Tullos, also a water resources engineer at Oregon State and Kibler’s PhD advisor, report their findings in a paper accepted for publication in Water Resources Research, a journal of the American Geophysical Union. Kibler now works as a researcher at the International Centre for Water Hazard & Risk Management in Tsukuba, Japan, and as an Associate Professor at Japan's National Graduate Institute for Policy Studies in Tokyo.

To compare the impacts of small and large dams, Kibler investigated 31 small dams built on tributaries of China’s Nu River and four large dams proposed for the main stem of the Nu River. She assessed the environmental effects of these dams in 14 categories, including the area and quality of habitat lost, the length of river channel affected, the amount of conservation land impacted, and the landslide risk. Because information regarding large dams is restricted under the Chinese State Secrets Act, Kibler modeled the potential effects of the four large dams using publically-available information from hydropower companies, development agencies, and academic literature.

After evaluating data from the field, hydrological models, and Environmental Impact Assessment reports about the small dams, Kibler and Tullos concluded that impacts of the small dams exceeded those of large dams on nine of the 14 characteristics they studied.

One particularly detrimental impact of the small dams observed in this study is that they often divert the flow of the river to hydropower stations, leaving several kilometers of river bed dewatered, Kibler explained.

From its headwaters in the Tibetan Plateau, the Nu River flows through China, Myanmar (Burma) and Thailand. “While the number of small hydropower dams in operation or planned for tributaries to the Nu River is unreported,” the authors note in this study, “our field surveys indicate that nearly one hundred small dams currently exist within Nujiang Prefecture alone.”

Thirteen large hydropower dams are proposed for the main stream of the Nu River in Tibet and Yunnan Province in China. “No large dams have been built, but there have been reports that site preparations have begun at some proposed dam sites,” Kibler said.

Environmental, social, and economic factors make the Nu River basin extremely sensitive to hydropower installations. In addition to supporting several protected species, the region is home to a large proportion of ethnic minorities and valuable natural resources, the authors report in the study. Parts of the Nu River are also designated as a World Heritage site and the Nature Conservancy and Conservation International have delineated stretches of this river and its tributaries as biodiversity hotspots. But proposed hydropower projects are threatening these statuses, according to Kibler.

While large hydropower projects are managed by the central government, and both large and small hydropower projects undergo environmental impact assessments, decisions about small hydropower projects are made at a provincial or other regional level and receive far less oversight, Kibler and Tullos state in their paper.
Small dams in China “often lack sufficient enforcement of environmental regulations” because they are “left to the jurisdiction of the province,” said Guy Ziv, lead scientist for the Natural Capital Project, an organization which develops tools to assess and quantify natural resources, and a researcher for the Woods Institute for the Environment at Stanford University. This study, he added, is “an important contribution to the field of natural resource management.”

The lack of regulation paired with a dearth of communication between small dam projects in China allows for the impacts to multiply and accumulate through several dam sites, the study authors write.

In order to mitigate the detrimental effects of small dams, there is a “need for comprehensive planning of low-impact energy development.” Kibler and Tullos note.

Policies supporting growth in the small hydropower sector are often crafted at the national or international level, Kibler noted. For example, many of the small dams investigated in the new study were supported by the Kyoto Protocol, a 1997 agreement to reduce greenhouse gas emissions.

“The lack of comprehensive analysis regarding cumulative impact of small hydropower,” Kibler said, “is a significant research gap with important policy implications.”

The National Science Foundation funded this work.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/wrcr.20243/abstract

Or, you may order a copy of the final paper by emailing your request to Sarah Charley at scharley@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:

Cumulative biophysical impact of small and large hydropower development, Nu River, China

Authors:
Kelly M. Kibler Water Resources Engineering, Oregon State University, Corvallis, Oregon, United States; Desiree D. Tullos Biological & Ecological Engineering, Oregon State University, Corvallis, Oregon, United States.

Contact information for the author:

Kelly Kibler, Email: kibler55@pwri.go.jp, Phone: +81-29-879-6809

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/news/press/pr_archives/2013/2013-22.shtml

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>