Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silent strike from thunderclouds

17.08.2009
Thunderclouds generate very strong electric fields that can accelerate electrons to relativistic speeds. This ‘electron avalanche’ goes on to collide with atoms and produce an intense burst of radiation, which is sometimes followed by lightning.

Recently, Harufumi Tsuchiya at the RIKEN Advanced Science Institute and co-workers observed a long radiation burst above the mountains of Japan that they believe was associated with thunderclouds, but not with any lightning1. Their crucial breakthrough was to measure both charged particles and gamma-rays, giving important information on the origins of the burst.

Most radiation bursts only last up to a few milliseconds, but longer events lasting up to a few minutes have been observed from aircraft, on high mountains and near the coast of Japan. These longer bursts have puzzled scientists because theory suggests that an electron avalanche should last only a few microseconds at most.

Tsuchiya and co-workers have been working to understand these elusive long radiation bursts. In January 2007 they detected a long burst of gamma-rays over the Sea of Japan2. More recently, they installed a detector near Norikura Cosmic-Ray Observatory, located 2,770 meters above sea level in the mountains of Gifu prefecture, which regularly experiences thunderstorms.

The new detector contains a plastic scintillator that is very sensitive to charged particles, but not to photons, and a sodium iodide scintillator that is sensitive to both types of radiation. By combining these two signals, the researchers were able to record both charged particles and gamma rays from a burst lasting 90 seconds during thunderstorms shortly after midnight on 20 September 2008.

“Although we made our detector by ourselves, the so-called ‘anti-coincidence method’ to distinguish between particles and photons is very common in cosmic-ray measurement and satellite observations,” says Tsuchiya. Thanks to this simultaneous detection, the researchers were able to calculate that the main source of the burst was only about 90 meters away from their detector, and resulted from a 200-meter-long acceleration region in the thunderclouds.

The charged particles they recorded were probably the most energetic electrons, which survive long distances in the atmosphere. In fact, the researchers estimate that the burst produced around 300 million electrons with energies of over 20 MeV. These are higher energies than previously anticipated, and could go some way to explaining how longer radiation bursts might arise from thunderclouds.

“We believe this kind of observation would be useful to better understand a fast charging mechanism of thunderclouds, and possibly lightning initiation,” says Tsuchiya.

References

1. Tsuchiya, H., Enoto, T., Torii, T., Nakazawa, K., Yuasa, T., Torii, S., Fukuyama, T., Yamaguchi, T., Kato, H., Okano, M. et al. Observation of an energetic radiation burst from mountain-top thunderclouds. Physical Review Letters 102, 255003 (2009).

2. Tsuchiya, H., Enoto, T., Yamada, T., Yuasa, T., Kawaharada, M., Kitaguchi, T., Kokubun, M., Kato, H., Okano, M., Nakamura, S. & Makishima, K. Detection of high-energy gamma rays from winter thunderclouds. Physical Review Letters 99, 165002 (2007).

The corresponding author for this highlight is based at the RIKEN Cosmic Radiation Laboratory

Tsuchiya, H., Enoto, T., Torii, T., Nakazawa, K., Yuasa, T., Torii, S., Fukuyama, T., Yamaguchi, T., Kato, H., Okano, M. et al. Observation of an energetic radiation burst from mountain-top thunderclouds. Physical Review Letters 102, 255003 (2009)

Tsuchiya, H., Enoto, T., Yamada, T., Yuasa, T., Kawaharada, M., Kitaguchi, T., Kokubun, M., Kato, H., Okano, M., Nakamura, S. & Makishima, K. Detection of high-energy gamma rays from winter thunderclouds. Physical Review Letters 99, 165002 (2007).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/764/

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>