Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silent strike from thunderclouds

17.08.2009
Thunderclouds generate very strong electric fields that can accelerate electrons to relativistic speeds. This ‘electron avalanche’ goes on to collide with atoms and produce an intense burst of radiation, which is sometimes followed by lightning.

Recently, Harufumi Tsuchiya at the RIKEN Advanced Science Institute and co-workers observed a long radiation burst above the mountains of Japan that they believe was associated with thunderclouds, but not with any lightning1. Their crucial breakthrough was to measure both charged particles and gamma-rays, giving important information on the origins of the burst.

Most radiation bursts only last up to a few milliseconds, but longer events lasting up to a few minutes have been observed from aircraft, on high mountains and near the coast of Japan. These longer bursts have puzzled scientists because theory suggests that an electron avalanche should last only a few microseconds at most.

Tsuchiya and co-workers have been working to understand these elusive long radiation bursts. In January 2007 they detected a long burst of gamma-rays over the Sea of Japan2. More recently, they installed a detector near Norikura Cosmic-Ray Observatory, located 2,770 meters above sea level in the mountains of Gifu prefecture, which regularly experiences thunderstorms.

The new detector contains a plastic scintillator that is very sensitive to charged particles, but not to photons, and a sodium iodide scintillator that is sensitive to both types of radiation. By combining these two signals, the researchers were able to record both charged particles and gamma rays from a burst lasting 90 seconds during thunderstorms shortly after midnight on 20 September 2008.

“Although we made our detector by ourselves, the so-called ‘anti-coincidence method’ to distinguish between particles and photons is very common in cosmic-ray measurement and satellite observations,” says Tsuchiya. Thanks to this simultaneous detection, the researchers were able to calculate that the main source of the burst was only about 90 meters away from their detector, and resulted from a 200-meter-long acceleration region in the thunderclouds.

The charged particles they recorded were probably the most energetic electrons, which survive long distances in the atmosphere. In fact, the researchers estimate that the burst produced around 300 million electrons with energies of over 20 MeV. These are higher energies than previously anticipated, and could go some way to explaining how longer radiation bursts might arise from thunderclouds.

“We believe this kind of observation would be useful to better understand a fast charging mechanism of thunderclouds, and possibly lightning initiation,” says Tsuchiya.

References

1. Tsuchiya, H., Enoto, T., Torii, T., Nakazawa, K., Yuasa, T., Torii, S., Fukuyama, T., Yamaguchi, T., Kato, H., Okano, M. et al. Observation of an energetic radiation burst from mountain-top thunderclouds. Physical Review Letters 102, 255003 (2009).

2. Tsuchiya, H., Enoto, T., Yamada, T., Yuasa, T., Kawaharada, M., Kitaguchi, T., Kokubun, M., Kato, H., Okano, M., Nakamura, S. & Makishima, K. Detection of high-energy gamma rays from winter thunderclouds. Physical Review Letters 99, 165002 (2007).

The corresponding author for this highlight is based at the RIKEN Cosmic Radiation Laboratory

Tsuchiya, H., Enoto, T., Torii, T., Nakazawa, K., Yuasa, T., Torii, S., Fukuyama, T., Yamaguchi, T., Kato, H., Okano, M. et al. Observation of an energetic radiation burst from mountain-top thunderclouds. Physical Review Letters 102, 255003 (2009)

Tsuchiya, H., Enoto, T., Yamada, T., Yuasa, T., Kawaharada, M., Kitaguchi, T., Kokubun, M., Kato, H., Okano, M., Nakamura, S. & Makishima, K. Detection of high-energy gamma rays from winter thunderclouds. Physical Review Letters 99, 165002 (2007).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/764/

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>