Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant reduction in temperature and vegetation seasonality over northern latitudes

11.03.2013
Amplified greenhouse effect shaping North into South

An international team of authors from 17 institutions in seven countries, including the Woods Hole Research Center, published a study in the journal Nature Climate Change on the 10 March 2013 (10.1038/NCLIMATE1836: http://www.nature.com/nclimate).

The study shows that, as the cover of snow and ice in the northern latitudes has diminished in recent years, the temperature over the northern land mass has increased at different rates during the four seasons, causing a reduction in temperature and vegetation seasonality in this area. The temperature and vegetation at northern latitudes increasingly resemble those found several degrees of latitude farther south as recently as 30 years ago.

The NASA-funded study, based on newly improved ground and satellite data sets, examines critically the relationship between changes in temperature and vegetation productivity in northern latitudes. "The amplified warming in the circumpolar area roughly above the Canada-USA border is reducing temperature seasonality over time because the colder seasons are warming more rapidly than the summer," says Liang Xu, a Boston University doctoral student and lead co-author of the study. As a result of the enhanced warming over a longer ground-thaw season, the total amount of heat available for plant growth in these northern latitudes is increasing—creating large patches of vigorously productive vegetation totaling more than a third of the northern landscape—over 9 million km2, which is roughly about the area of the USA.

A key finding of this study is an accelerating greening rate in the Arctic and a decelerating rate in the boreal region, despite a nearly constant rate of temperature seasonality diminishment in these regions over the past 30 years. "Some areas of boreal forest will be negatively impacted by warming temperatures, from increased drought stress as well as insect and fire disturbance, but this work shows that in most high latitude regions we see increased productivity resulting from a reduced range of seasonal temperature variability," says co-author Scott Goetz, a senior scientist at the Woods Hole Research Center. Dr. Goetz's research focuses on ecosystem responses to environmental change, including monitoring and modeling the linkages and feedbacks between forests and climate, land use change and disturbance.

The authors measured seasonality changes using latitude as a yardstick. They first defined reference latitudinal profiles for the quantities being observed and then quantified changes in them over time as shifts along these profiles.

"Arctic plant growth during the early 1980s reference period equaled that of lands north of 64 degrees north. Today, just 30 years later, it equals that of lands above 57 degrees north—a reduction in vegetation seasonality of about seven degrees south in latitude," says co-author Prof. Terry Chapin, Professor Emeritus, University of Alaska, Fairbanks. The change equates to a distance of approximately 480 miles southward.

Based on analysis of 17 state-of-the-art climate model simulations, diminishment of temperature seasonality in these regions could be more than 20 degrees in latitude by the end of this century relative to the 1951-1980 reference period. These changes will affect local residents as change occurs in ecosystem services, such as in timber and traditional food production, as a result of warming temperatures. They will also impact the global community through changes in regulatory ecosystem services relating to emissions of greenhouse gases.

About the Woods Hole Research Center—WHRC is a private, non-profit research organization focusing on environmental sciences. Our scientists combine analysis of satellite images of the Earth with field studies to measure, model, and map changes in the world's ecosystems, from the thawing permafrost in the Arctic to the expanding agriculture regions of the tropics. We work locally and regionally, with in-depth expertise and collaborations in North and South America and Africa; and we also work globally, focusing on how humans are changing global cycles of carbon, nitrogen, and water. We merge natural science with economics to discover sustainable paths for human prosperity and stewardship of the Earth's natural resources.

Contact information for the authors:
Liang Xu: xuliang@bu.edu, Cell: +1-617-510-6583
Scott Goetz: sgoetz@whrc.org
Ian Vorster, Director of Communications at WHRC: ivorster@whrc.org
Experts to comment on this story:
Dr. Gavin Schmidt, gavin.a.schmidt@nasa.gov, Tel: 212 678 5627 Cell: 212 749 0006
Prof. Uma S. Bhatt, usbhatt@alaska.edu, +1-907-474-2662, +34-685-897-961
Prof. Ian Colin Prentice, Macquaire University, colin.prentice@mq.edu.au (Call UK Home Tel: +44-1392-851329)
Links:
http://cliveg.bu.edu/greeningearth/ssnltydim/ssnlty-dim.html
http://www.whrc.org

Ian Vorster | EurekAlert!
Further information:
http://www.whrc.org

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>