Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shrinking Bylot Island Glaciers Tell Story Of Climate Change

01.09.2009
The U.S. Geological Survey has released the results of a long-term study of key glaciers in western North America, reporting this month that glacial shrinkage is rapid and accelerating and a result of climate change.

University of Illinois geologist William Shilts spent nearly two decades studying glaciers on Bylot Island, an uninhabited island about 300 miles southwest of Thule, Greenland. He, his students and other geologists who followed in his footsteps have chronicled the decline of several Bylot Island glaciers.

Photos of the island from the 1940s to the present offer a vivid picture of the changing glaciers and the forces that shape their retreat.

“I started working in the late 1970s on Bylot Island, which is about the size of New Jersey,” said Shilts, the executive director of the Institute of Natural Resource Sustainability at Illinois. “Bylot Island is like a miniature North America. It has a very old crystalline rock core that’s covered with ice and glaciers, and it’s surrounded by younger rocks.”

“As time went on it became very evident that the glaciers on Bylot Island were, for the most part, retreating, shrinking, melting faster than ice could be produced,” he said. “For whatever reason, the summer melting was exceeding the winter snowfall.”

With a perspective spanning more than 4 billion years, geologists have a unique point of view on current climate changes. They know that ice ages and glacial retreats are common because these events leave indelible marks on the land.

To a geologist’s eye, the color of rock near a melting glacier, the pattern of scars on its surface or fissures at its edges, the shape of a mound of gravel left behind or the pattern of snow and ice on its surface speak volumes about the glacier’s origin, recent history and age.

Glaciers are perpetually moving, flowing frozen rivers, and like other rivers, they churn up dirt and rocks carry them “downstream.” When a glacier retreats, the mud and rocks are often dumped at its edge, forming moraines. The moraines sometimes grow so large that they inhibit the advance of the glacier and cause the ice to thicken, like water filling a bathtub.

The surface of the rocks also tells a story. When a glacier melts, the newly exposed material becomes an inviting habitat for lichen and other organisms, which gradually darken the stone. Such growth can take 50 or 60 years to start, however, so bare rock inside the moraine signals that a glacier has retreated only within the last few decades. Shilts calls the light-colored moraine below the dark lichen-covered rock the glacier’s “bathtub ring.”

“1948 was the year that the first aerial photographs were taken of Bylot Island and most of northern Canada,” Shilts said. “On those photographs you can see that the glaciers were considerably advanced over what they are now. And any boulders that were involved with glacier activities in the 1940s look as fresh as if they were broken off their outcrops yesterday. They have no lichen or any sort of growth on them. As soon as you go beyond the 1948 boundary, the boulders are covered with black lichen. You can’t even see the rock. And so it’s a very clear demarcation on the ground.”

Shilts photographed many of the same glaciers in the 1980s and 1990s, and other geologists have chronicled the changes up to the present. These photos show a steady and rapid decline in the extent of several glaciers: Stagnation Glacier, covered in a layer of rock and debris, has shrunk considerably since 1948.

Nearby Fountain Glacier seems more stable, but the outwash plain below it, a zone always coated in a thick layer of ice, even throughout the summer, was completely dry in the summer of 2008.

Aktineq Glacier has shrunk back about a kilometer since 1948, Shilts said. Most of the other glaciers on Bylot Island, and on nearby Baffin Island, also appear to be melting away.

A glacier that shrinks over a period of decades may seem like an overt sign of a warming climate, but other contributors to glacial retreat are less obviously tied to climate change. Warmer temperatures can bring on more frequent freeze-thaw cycles that open fissures in the rock walls above a glacier, dumping debris on the glacier’s surface that hastens melting by absorbing more of the sun’s heat.

A more precise way of timing glacial events involves radiocarbon dating the soil in embankments near glacial moraines. Shilts and his colleagues conducted such studies on Bylot Island, and found that an undisturbed sand bank near a glacial moraine was about 6,800 years old.

“That means at the very least that the glacier that is a couple of feet away from that sand bank has not gone across that sand bank in 6,800 years,” he said.

Another approach, called cosmogenic dating, indicated that the boulders just outside the 1948 moraine were even older. The technique, conducted by Shilts’ former graduate student, Shirley McCuaig, dated those boulders at 55,000 years, plus or minus 5,000 years.

That finding confirmed something that another student, Rod Klassen, had suggested in his PhD thesis at Illinois, Shilts said. “And that is that the glaciers that are now on Bylot Island were as far advanced in the 1940s as they have been in the last 55,000 years. And now they are retreating.”

“My interpretation of what I saw on Bylot Island is that we’re in another cycle of glacial retreat,” Shilts said. “Whether that cycle is primarily driven by human emissions of carbon dioxide in the atmosphere creating a warming trend, or whether it’s driven by natural cycles, which relate to our orbit around the sun, sunspot activity or various things in the earth’s atmosphere in general, I can’t say.”

“My personal opinion is that this is a combination of both factors,” Shilts said. “There’s a normal cycle here – we’re coming out of the ‘Little Ice Age,’ and have been for some time. At the same time, the Industrial Revolution has begun to load the atmosphere with carbon dioxide among other things. There’s a human effect, and there’s a natural effect, and sorting out those two is very difficult.”

Other geologists who have conducted research on Bylot Island include Tristan Irvine-Fynn, Rod Klassen, Shirley McCuaig, Brian Moorman, Pablo Wainstein, Ken Whitehead and Christian Zdanowicz.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/slideshows/bylot_glacier/index.html

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>