Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The least sea ice in 800 years

03.07.2009
New research, which reconstructs the extent of ice in the sea between Greenland and Svalbard from the 13th century to the present indicates that there has never been so little sea ice as there is now. The research results from the Niels Bohr Institute, among others, are published in the scientific journal, Climate Dynamics.

There are of course neither satellite images nor instrumental records of the climate all the way back to the 13th century, but nature has its own 'archive' of the climate in both ice cores and the annual growth rings of trees and we humans have made records of a great many things over the years - such as observations in the log books of ships and in harbour records. Piece all of the information together and you get a picture of how much sea ice there has been throughout time.

Modern research and historic records

"We have combined information about the climate found in ice cores from an ice cap on Svalbard and from the annual growth rings of trees in Finland and this gave us a curve of the past climate" explains Aslak Grinsted, geophysicist with the Centre for Ice and Climate at the Niels Bohr Institute at the University of Copenhagen.

In order to determine how much sea ice there has been, the researchers needed to turn to data from the logbooks of ships, which whalers and fisherman kept of their expeditions to the boundary of the sea ice. The ship logbooks are very precise and go all the way back to the 16th century. They relate at which geographical position the ice was found. Another source of information about the ice are records from harbours in Iceland, where the severity of the winters have been recorded since the end of the 18th century.

By combining the curve of the climate with the actual historical records of the distribution of the ice, researchers have been able to reconstruct the extent of the sea ice all the way back to the 13th century. Even though the 13th century was a warm period, the calculations show that there has never been so little sea ice as in the 20th century.

In the middle of the 17th century there was also a sharp decline in sea ice, but it lastet only a very brief period. The greatest cover of sea ice was in a period around 1700-1800, which is also called the 'Little Ice Age'.

"There was a sharp change in the ice cover at the start of the 20th century," explains Aslak Grinsted. He explains, that the ice shrank by 300.000 km2 in the space of ten years from 1910-1920. So you can see that there have been sudden changes throughout time, but here during the last few years we have had some record years with very little ice extent.

"We see that the sea ice is shrinking to a level which has not been seen in more than 800 years", concludes Aslak Grinsted.

Link: http://dx.doi.org/10.1007/s00382-009-0610-z

Contact: Aslak Grinsted, geophysicist, PhD. Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, +45 3138-0716, ag@glaciology.net - aslak@nbi.dk - www.glaciology.net

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://dx.doi.org/10.1007/s00382-009-0610-z
http://www.glaciology.net

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>