Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover combustion mechanism to better predict warming by wildfires

05.08.2014

Scientists have uncovered key attributes of so-called “brown carbon” from wildfires.

Brown carbon’s heating effect in climate models can now be quantified

Scientists have uncovered key attributes of so-called “brown carbon” from wildfires, airborne atmospheric particles that may have influenced current climate models that failed to take the material’s warming effects into account. The work was described by a collaborative team of researchers from Los Alamos National Laboratory, Carnegie Mellon University and the University of Montana in the journal Nature Geosciences this week.


Wildfire fuel being burned in the fire laboratory as the aerosols from the top are being sucked into inlets and sampled at the Missoula Fire Sciences Laboratory in Missoula, Montana by Los Alamos and Carnegie Mellon University scientists. Photo courtesy of the University of Montana and U.S. Forest Service.

“Biomass burning and wildfires emit fine particulates that are toxic to humans and can warm or cool climate. While their toxicity is certain, their specific climatic effects remain unclear and are a hot research topic,” said Manvendra Dubey, a senior Los Alamos climate scientist. “Smoke from wildfires accounts for one-third of the Earth’s ‘black’ carbon — the familiar charred particles that are associated with fires with large flames. While black carbon is relatively simple — solely consisting of carbon — brown carbon contains a complex soup of organic material, making it difficult to identify, characterize and model.”

Black carbon or soot that absorbs sunlight at all wavelengths is a well-known, potent warmer.  Its twin, organic carbon co-emitted by fires, reflects sunlight and so can cool the climate. These two opposing effects cancel each other out, causing current climate models to predict that wildfires have a small net effect on climate. However, there is a third form of emission, called brown carbon, that absorbs sunlight at short blue wavelengths that is also in the soup of fire emissions.

The study discovered that brown carbon shares a common production mechanism with black carbon. Brown carbon’s optical properties and volatility are highly variable and complex and no systematic treatment has been feasible in current models.  In fact “what makes matters worse is many models treat brown carbon as organic carbon, a double whammy since they are computing a cooling effect for what is actually a warming particle,” said Dubey.  Clearly, he said, models could be significantly under-estimating warming effect of fires both now and in the future.

“You might call brown carbon frustrated black carbon that is made when the wood isn’t fully cooked all the way,” said Dubey. Brown carbon warms the atmosphere similarly to black carbon, but the actual prevalence of brown carbon in wildfire smoke has been a large question mark.  This study should answer this by providing a simple treatment of all absorbing fire particles in models and improve climate predictions.

The Los Alamos team of Dubey, Allison Aiken and Shang Liu performed controlled laboratory experiments of the optical properties of particles emitted by globally important fuels.  They carefully manipulated the particles by heating to remove the volatile components and then monitored changes in optical properties.  Analysis revealed that the least volatile fraction, that is most likely to be transported globally similar to refractory black carbon, is much more light absorbing than the volatile fraction.

This finding clearly establishes the “global significance of brown carbon aerosol, a research area prioritized by DOE’s Atmospheric System Research (ASR) program, and our discovery shows how this missing warming agent can be effectively treated in DOE’s climate models” said Dubey.

The three-institution research team included both experimentalists and modelers who understand each other’s languages and the experimentalists, know what the modelers need, and had this in mind for the experimental design, noted Rawad Saleh, a postdoctoral researcher at Carnegie Mellon and one of the leads on the study.

The U.S. Department of Energy’s Atmospheric System Research Program funded the Los Alamos research.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

Nancy Ambrosiano | Eurek Alert!
Further information:
http://www.lanl.gov/discover/news-release-archive/2014/August/08.04-warming-by-wildfires.php

Further reports about: Laboratory Security combustion heating mechanism sunlight volatile wildfires

More articles from Earth Sciences:

nachricht New Link Between Ocean Microbes and Atmosphere Uncovered
22.05.2015 | University of California, San Diego

nachricht Scientists tackle mystery of thunderstorms that strike at night
21.05.2015 | National Center for Atmospheric Research/University Corporation for Atmospheric Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>