Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reconstruct formation of the southern Appalachians

22.11.2016

Around 300 million years ago, the landmass that is now North America collided with Gondwana, a supercontinent comprised of present-day Africa and South America. That clash of continents lifted tons of rock high above the surrounding terrain to form the southern end of the Appalachian Mountains now seen in Alabama, Tennessee and Georgia. A team of geophysicists has reconstructed the terminal phase of that collision and developed a new picture of how it unfolded.

The study, led by Brown University researchers, used seismic monitoring stations to create a sonogram-like image of the crust beneath the southern U.S., near of the southern base of the Appalachians. The research shows that Gondwana crust was thrust atop North America when the two continents collided, sliding northward as much as 300 kilometers before the two continents separated and drifted apart about 200 million years ago. The process revealed by the study looks a lot like the process that is building the Himalayas today, as the Eurasian continent is pushing atop the Indian subcontinent.


The region in color denotes a shear zone where the continent of Gondwana slip atop proto-North America 300 million years ago.

Credit: Fischer Lab/Brown University

"We show that a continental collision that occurred 300 million years ago looks a lot like the collision we see in the Himalayas today," said Karen Fischer, a professor in Brown's Department of Earth, Environmental and Planetary Sciences and a co-author of the study. "This is the best-documented case I'm aware of in which the final suture between ancient continental crusts has a geometry similar to the present-day India-Eurasia crustal contact beneath the Himalayas."

The research was led by Emily Hopper, who earned her doctorate from Brown in 2016 and is now a postdoctoral fellow at the Lamont-Doherty Earth Observatory of Columbia University. The study is published online in the journal Geology.

For the study, the research team placed 85 seismic monitoring stations across southern Georgia and parts of Florida, North Carolina and Tennessee. The researchers also used data from the Earthscope Transportable Array, a rolling array of seismic stations that made its way across the contiguous U.S. between 2005 and 2015. In all, 374 seismic stations recorded the faint vibrational waves from distant earthquakes as they traveled through the rocks beneath.

Acoustic energy from earthquakes can travel though the Earth as different types of waves, including shear waves, which oscillate perpendicular to the direction of propagation, and compressional waves, which oscillate in the same direction as they propagate. By analyzing the extent to which shear waves convert to compression waves when they hit a contrast in rock properties, the researchers could create a seismic image of the subsurface crust.

The study detected a thin continuous layer of rock that starts near the surface and slopes gently to the south to depths of approximately 20 kilometers, in which earthquake waves travel faster than in the surrounding rocks. That layer stretches southward about 300 kilometers from central Georgia to northern Florida. It spans about 360 kilometers east to west, from the central part of South Carolina, across all of Georgia and into eastern Alabama.

The mostly likely explanation for that anomalous layer, the researchers say, is that it's a shear zone -- the contact along which Gondwanan plate slid atop of the proto-North American plate.

"Where these two crustal blocks came into contact, there would have been tremendous deformation that aligned the mineral grains in the rocks and changed the propagation velocities of the seismic waves," Fischer said. "So our preferred explanation for this continuous layer is that we're seeing mineral alignment on the shear zone between these two plates."

The presence of this widespread, gently sloped shear zone paints a new picture of the final stages of the collision between the two continents. Researchers had long thought that proto-North American and Gondwana collided on a shear zone with a much steeper slope, leading some to the view that the two plates slid laterally past each other. But such a steep shear zone would be in stark contrast to the 300 kilometers of nearly horizontal shear zone found in this new study.

The geometry of the contact detected in the study is similar to the process that is currently raising the Himalayas. In that collision, Fischer says, Eurasian crust has overtopped the Indian subcontinent by a distance similar to that found in the Appalachians. That process continues today, raising the Himalayas by 4 to 10 millimeters per year.

The similarity between the two events tells scientists that there's consistency over time in the way mountains are built, Fischer says.

"When we think of mountain-building, the Himalayas are the archetype," she said. "It's interesting that a collision that took place 300 million years ago is very similar to one happening today."

And that has implications for understanding the way the Earth's crust has evolved.

"What that tells us is that the way the crust deforms -- where it's weak, where it's strong and how it accommodates deformation -- has been fairly uniform through time," Fischer said. "The crust couldn't have been much hotter; it couldn't have been much colder; and it couldn't have had a very different distribution of fluids, as all of these things influence the way the crust deforms."

###

Hopper and Fischer's co-authors on the paper were Lara Wagner of the Carnegie Institution for Science and Robert Hawman of the University of Georgia. The work was supported by the National Science Foundation's Earthscope Program (EAR-0844276, EAR-0844186 and EAR-0844154).

Note to Editors: Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>