Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Oldest Occurrence of Arthropods Preserved in Amber

28.08.2012
An international team of scientists has discovered the oldest record of arthropods—invertebrate animals that include insects, arachnids, and crustaceans—preserved in amber.

The specimens, one fly and two mites found in millimeter-scale droplets of amber from northeastern Italy, are about 100 million years older than any other amber arthropod ever collected. The group’s findings, which are published today in the Proceedings of the National Academy of Sciences, pave the way for a better evolutionary understanding of the most diverse group of organisms in the world.


Amber drops

“Amber is an extremely valuable tool for paleontologists because it preserves specimens with microscopic fidelity, allowing uniquely accurate estimates of the amount of evolutionary change over millions of years,” said corresponding author David Grimaldi, a curator in the American Museum of Natural History’s Division of Invertebrate Zoology and a world authority on amber and fossil arthropods.

Globules of fossilized resin are typically called amber. Amber ranges in age from the Carboniferous (about 340 million years ago) to about 40,000 years ago, and has been produced by myriad plants, from tree ferns to flowering trees, but predominantly by conifers. Even though arthropods are more than 400 million years old, until now, the oldest record of the animals in amber dates to about 130 million years. The newly discovered arthropods break that mold with an age of 230 million years. They are the first arthropods to be found in amber from the Triassic Period.

The amber droplets, most between 2-6 millimeters long, were buried in outcrops high in the Dolomite Alps of northeastern Italy and excavated by Eugenio Ragazzi and Guido Roghi of the University of Padova. About 70,000 of the miniscule droplets were screened for inclusions —encased animal and plant material—by a team of German scientists led by Alexander Schmidt, of
Georg-August University, Göttingen, resulting in the discovery of the three arthropods. The tiny arthropods were studied by Grimaldi and Evert Lindquist, an expert on gall mites at Agriculture and Agri-Food Canada in Ottawa.

Two of the specimens are new species of mites, named Triasacarus fedelei and Ampezzoa triassica. They are the oldest fossils in an extremely specialized group called Eriophyoidea that has about 3,500 living species, all of which feed on plants and sometimes form abnormal growth called “galls.” The ancient gall mites are surprisingly similar to ones seen today.

“You would think that by going back to the Triassic you’d find a transitional form of gall mite, but no,” Grimaldi said. “Even 230 million years ago, all of the distinguishing features of this family were there—a long, segmented body; only two pairs of legs instead of the usual four found in mites; unique feather claws, and mouthparts.”

The ancient mites likely fed on the leaves of the tree that ultimately preserved them, a conifer in the extinct family Cheirolepidiaceae. Although about 97 percent of today’s gall mites feed on flowering plants, Triasacarus fedelei and Ampezzoa triassica existed prior to the appearance and rapid radiation of flowering plants. This finding reveals the evolutionary endurance of the mites.

“We now know that gall mites are very adaptable,” Grimaldi said. “When flowering plants entered the scene, these mites shifted their feeding habits, and today, only 3 percent of the species live on conifers. This shows how gall mites tracked plants in time and evolved with their hosts.”

The third amber specimen, a fly, cannot be identified because, outside of the insect’s antennae, its body parts were not well preserved. But now that the researchers have shown that amber preserved Triassic arthropods, they are eager to find more specimens.

“There was a huge change in the flora and fauna in the Triassic because it was right after one of the most profound mass extinctions in history, at the end of the Permian,” Grimaldi said. “It’s an important time to study if you want to know how life evolved.”

This research was funded by the German Initiative of Excellence. Other authors include Saskia Jancke, of the Natural History Museum in Berlin; Paul Nascimbene, American Museum of Natural History; Kerstin Schmidt, Friedrich-Schiller-University Jena, Germany; and Torsten Wappler, University of Bonn, Germany.

Research paper: A.R. Schmidt, S. Jancke, E.E. Lindquist, E. Ragazzi, G. Roghi, P.C. Nascimbene, K. Schmidt, T. Wappler, D.A. Grimaldi, “Arthropods in Amber from the Triassic Period,” PNAS.

AMERICAN MUSEUM OF NATURAL HISTORY (AMNH.ORG)
The American Museum of Natural History, founded in 1869, is one of the world’s preeminent scientific, educational, and cultural institutions. The Museum encompasses 46 permanent exhibition halls, including the Rose Center for Earth and Space and the Hayden Planetarium, as well as galleries for temporary exhibitions. Five active research divisions and three cross-disciplinary centers support 200 scientists, whose work draws on a world-class permanent collection of more than 32 million specimens and artifacts, including specialized collections for frozen tissue and genomic and astrophysical data, as well as one of the largest natural history libraries in the Western Hemisphere. Through its Richard Gilder Graduate School, it is the only American museum authorized to grant the Ph.D. degree. In 2012, the Museum began offering a pilot Master of Arts in Teaching with a specialization in earth science. Approximately 5 million visitors from around the world came to the Museum last year, and its exhibitions and Space Shows can be seen in venues on five continents. The Museum’s website and collection of apps for mobile devices extend its collections, exhibitions, and educational programs to millions more beyond its walls. Visit amnh.org for more information.
Follow
Become a fan of the Museum on Facebook at facebook.com/naturalhistory, or visit twitter.com/AMNH to follow us on Twitter.

NO. 84

Media Inquiries: Kendra Snyder, Department of Communications
212-496-3419; ksnyder@amnh.org
www.amnh.org

Kendra Snyder | EurekAlert!
Further information:
http://www.amnh.org

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>