Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find odd twist in slow 'earthquakes': Tremor running backwards

23.05.2011
Earthquake scientists trying to unravel the mysteries of an unfelt, weeks-long seismic phenomenon called episodic tremor and slip have discovered a strange twist. The tremor can suddenly reverse direction and travel back through areas of the fault that it had ruptured in preceding days, and do so 20 to 40 times faster than the original fault rupture.

"Regular tremor and slip goes through an area fairly slowly, breaking it. Then once it's broken and weakened an area of the fault, it can propagate back across that area much faster," said Heidi Houston, a University of Washington professor of Earth and space sciences and lead author of a paper documenting the findings, published in Nature Geoscience.

Episodic tremor and slip, also referred to as slow slip, was documented in the Pacific Northwest a decade ago and individual events have been observed in Washington and British Columbia on a regular basis, every 12 to 15 months on average.

Slow-slip events tend to start in the southern Puget Sound region, from the Tacoma area to as far north as Bremerton, and move gradually to the northwest on the Olympic Peninsula, following the interface between the North American and Juan de Fuca tectonic plates toward Vancouver Island in Canada. The events typically last three to four weeks and release as much energy as a magnitude 6.8 earthquake, though they are not felt and cause no damage.

In a normal earthquake a rupture travels along the fault at great speed, producing potentially damaging ground shaking. In episodic tremor and slip, the rupture moves much more slowly along the fault but it maintains a steady pace, Houston said.

"There's not a good understanding yet of why it's so slow, what keeps it from picking up speed and becoming a full earthquake," she said.

Houston and her co-authors – Brent Delbridge, a UW physics undergraduate; Aaron Wech, a former UW graduate student now at Victoria University of Wellington, New Zealand; and Kenneth Creager, a UW Earth and space sciences professor – analyzed data collected from tremor events in July 2004, September 2005, January 2007, May 2008 and May 2009 (the 2004 and 2005 events took place only toward the north end of the Olympic Peninsula). The five events provided about 110 days' worth of data representing some 16,000 distinct locations.

The scientists found a distinct signal for clusters of tremor moving rapidly backwards from the leading edge of the tremor, through an area of the fault that had already experienced tremor.

They also noted that rapid tremor reversal appears to happen more readily near the Strait of Juan de Fuca, suggesting that stress from tides could play a role in generating the reversal because the interface appears to be more sensitive just after having been ruptured by the initial tremor event.

Houston noted that episodic tremor and slip occurs at a depth of 22 to 34 miles, where high temperatures have made the tectonic plates more pliable and thus more slippery. At a substantially shallower depth, perhaps 12 miles, the plates are not slippery and so are tightly locked together.

In the locked zone, the tectonic plates can hold the buildup of stress for hundreds of years, rather than just 15 months, but when the interface ruptures it can unleash a great megathrust earthquake such as the one that struck off the coast of Japan in March. Such earthquakes occur in the Cascadia subduction zone every 500 years, on average, and the last one – estimated at around magnitude 9.0 – happened in January 1700. Houston noted that the region is within the large time window when another megathrust earthquake could occur.

One key question still to be answered, she said, is what is happening on the plate interface between the locked zone and the depth where tremor occurs. Scientists hope to get a better understanding of the interplay between tremor events and subduction zone earthquakes, including whether the interval between tremor events changes as the end of the 500-year subduction zone earthquake cycle gets nearer.

"Various aspects of the tremor signal may change as the seismic cycle matures," Houston said. "It's also possible that the noise our seismometers detect from tremor events might get louder just before a big earthquake."

The work was funded by a grant from the National Science Foundation.

For more information, contact Houston at 206-616-7092 or heidi.houston@gmail.com

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

Further reports about: Earth's magnetic field Tremor subduction zone tectonic plate

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>