Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find increase in microearthquakes after Chilean quake

By studying seismographs from the earthquake that hit Chile last February, earth scientists at the Georgia Institute of Technology have found a statistically significant increase of microearthquakes in central California in the first few hours after the main shock.

The observation provides an additional support that seismic waves from distant earthquakes could also trigger seismic events on the other side of the earth. The results may be found online in the journal Geophysical Research Letters.

It has been well known that microearthquakes can be triggered instantaneously by distant earthquakes. However, sometimes the triggered events could occur long after the passage of the direct surface waves that take the shortest path on the earth surface.

There are several other explanations out there about how such delayed triggering occurs. Some involve the redistribution of pore fluids and triggered aseismic creep, while others simply consider them as aftershocks of the directly triggered events. But the group from Georgia Tech found something different.

"From our research, we've concluded the delayed triggering that occurs in the first few hours after an earthquake could be caused by multiple surface waves traveling back and forth around the earth multiple times," said Zhigang Peng, assistant professor in the School of Earth and Atmospheric Sciences at Georgia Tech.

In a previous paper, also published in Geophysical Research Letters last December, Peng's research group found that the direct surface waves of the Chilean earthquake triggered seismic activity in central California. In this new study, Peng's group looked beyond the direct surface waves and focused on secondary and tertiary waves that return after traveling across the globe multiple times. In addition, they went beyond earthquake information published in the U.S. Geological Survey catalog and instead studied the seismographs.

"So when you look at the events that have been reported in the catalog, you won't see this effect," said Peng. "But if you look at the seismographs, you'll see many small events and notice that they occurred mostly when those multiple surface waves arrived."

Peng said that the finding is significant because it also suggests that scientists can look beyond the direct surface waves and understand that those later-arriving waves could affect the seismic activity on the other side of the earth. But his team believes that seismic waves circle the globe only for large earthquakes. They are currently examining other regions and quakes to see just how widespread this effect is.

Peng's research group includes graduate students Chunquan Wu and Chastity Aiken. Their research was supported by the National Science Foundation.

David Terraso | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>