Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover underwater asphalt volcanoes

27.04.2010
Impressive landmarks hidden for 40,000 years rise from sea-floor

About 10 miles off the Santa Barbara coast, at the bottom of the Santa Barbara Channel, a series of impressive landmarks rise from the sea floor.

They've been there for 40,000 years, but have remained hidden in the murky depths of the Pacific Ocean--until now.

They're called asphalt volcanoes.

Scientists funded by the National Science Foundation (NSF) and affiliated with the University of California at Santa Barbara (UCSB), the Woods Hole Oceanographic Institution (WHOI), University of California at Davis, University of Sydney and University of Rhode Island, have identified the series of unusual volcanoes.

The largest of these undersea Ice Age domes lies at a depth of 700 feet (220 meters), too deep for scuba diving, which explains why the volcanoes have never before been spotted by humans, says Don Rice, director of NSF's Chemical Oceanography Program, which funded the research.

"They're larger than a football-field-long and as tall as a six-story building," says David Valentine, a geoscientist at UCSB and the lead author of a paper published on-line this week in the journal Nature Geoscience. "They're massive features, and are made completely out of asphalt."

Valentine and colleagues first viewed the volcanoes during a 2007 dive on the research submersible Alvin. Valentine credits Ed Keller, an earth scientist at UCSB, with guiding him and colleagues to the site.

"Ed had looked at some bathymetry [sea floor topography] studies conducted in the 1990s and noted some very unusual features," Valentine says.

Based on Keller's research, Valentine and other scientists took Alvin into the area in 2007 and discovered the source of the mystery.

Using the sub's robotic arm, the researchers broke off samples and brought them to labs at UCSB and WHOI for testing.

In 2009, Valentine and colleagues made two more dives to the area in Alvin. They also conducted a detailed survey of the area using an autonomous underwater vehicle, Sentry, which takes photos as it glides about nine feet above the ocean floor.

"When you 'fly' Sentry over the sea floor, you can see all of the cracking of the asphalt and flow features," says Valentine. "All the textures are visible of a once-flowing liquid that has solidified in place.

"That's one of the reasons we're calling them volcanoes, because they have so many features that are indicative of a lava flow."

Tests showed that these aren't your typical lava volcanoes, however, found in Hawaii and elsewhere around the Pacific Rim.

Using a mass spectrometer, carbon dating, microscopic fossils, and comprehensive, two-dimensional gas chromatography, the scientists determined that the structures are asphalt. They were formed when petroleum flowed from the sea-floor about 30,000-40,000 years ago.

Chris Reddy, a scientist at WHOI and a co-author of the paper, says that "the volcanoes underscore a little-known fact: half the oil that enters the coastal environment is from natural oil seeps like the ones off the coast of California."

The researchers also determined that the volcanoes were at one time a prolific source of methane, a greenhouse gas.

The two largest volcanoes are about a kilometer apart and have pits or depressions surrounding them. These pits, according to Valentine, are signs of "methane gas bubbling from the sub-surface."

That's not surprising, he says, considering how much petroleum was flowing there in the past.

"They were spewing out a lot of petroleum, but also lots of natural gas," he says, "which you tend to get when you have petroleum seepage in this area."

The discovery that vast amounts of methane once emanated from the volcanoes caused the scientists to wonder if there might have been an environmental impact on the area during the Ice Age.

"It became a dead zone," says Valentine. "We're hypothesizing that these features may have been a major contributor to those events."

While the volcanoes have been dormant for thousands of years, the 2009 Alvin dive revealed a few spots where gas was still bubbling.

"We think it's residual gas," says Valentine, who added that the amount of gas is so small it's harmless, and never reaches the surface.

Other co-authors of the paper are Christopher Farwell, Sarah C. Bagby, Brian A. Clark, and Morgan Soloway, all of UCSB; Robert K. Nelson, Dana Yoerger, and Richard Camilli of WHOI; Tessa M. Hill, UC Davis; Oscar Pizarro, University of Sydney; and Christopher N. Roman, University of Rhode Island.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>