Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover that salty sea spray affects clouds

23.12.2015

Aerosols have impact on cloud composition, duration

All over the planet, every day, oceans send plumes of sea spray into the atmosphere. Beyond the poetry of crashing ocean waves, this salt- and carbon-rich spray also has a dramatic effect on cloud formation and duration.


Ice nucleating particles from oceans are distinct from those on land, scientists have found.

Credit: NOAA

In a new paper published this week in the journal Proceedings of the National Academy of Sciences, Colorado State University atmospheric scientist Paul DeMott finds that sea spray is a unique, underappreciated source of what are called ice nucleating particles. These microscopic bits make their way into clouds and initiate the formation of ice, affecting the clouds' composition.

"The presence of these particles is critically important for precipitation and the lifetime of clouds, and consequently, for their radiative properties," DeMott said.

Added Nick Anderson, program director in the National Science Foundation (NSF) Division of Atmospheric and Geospace Sciences, which funded the research: "The development of clouds and precipitation is a core issue for understanding weather and climate processes. By studying ice nuclei, which can be considered a building block for clouds, these researchers will help piece together the puzzle of how clouds and precipitation form, especially over remote oceanic regions."

Clouds cover 60 percent of the Earth's surface at any given time. With their ability to reflect solar energy and absorb terrestrial radiation, clouds have dramatic effects on climate.

That ability is greatly influenced by the number, size and type of droplets and ice particles they contain. These cloud particles come from aerosols -- particles suspended in air -- from land and ocean surfaces.

From desert dust to fossil fuels, aerosols that affect clouds are everywhere.

The study has confirmed that ice nucleating particles from oceans are distinct -- both in their abundance and ice-making properties -- from land-sourced particles. Hence, their influence on the liquid-to-ice phase structure of clouds, and the clouds' radiative characteristics, can differ over vast swaths of Earth.

The laboratory portion of the study was conducted with other researchers at the NSF-supported Center for Aerosol Impacts on Climate and the Environment (CAICE), at which DeMott is a senior scientist.

Based at the University of California-San Diego, CAICE has laboratory wave flumes that simulate how ocean waves send sea spray aerosols into the air.

Researchers can study the biological and chemical makeup of these particles, as well as the transformations they undergo, and use special instruments to see how they influence cloud formation. DeMott and colleagues compared these data to other measurements made over oceans.

The study offers one explanation for why global climate models have consistently underestimated reflected, short-wave solar radiation in regions dominated by oceans, particularly in the southern hemisphere.

"Our paper gives a clearer picture of the behavior of major classes of atmospheric aerosols in clouds," DeMott said.

Media Contact

Cheryl Dybas
cdybas@nsf.gov
703-292-7734

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>