Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop model to map continental margins

09.09.2008
Scientists at the University of Liverpool have developed a new exploration method to assist the oil and gas industry in identifying more precisely where the oceans and continents meet.

Geophysicists at Liverpool have produced a mathematical technique to process satellite data that can map the thickness of the Earth’s crust under the oceans in order to locate where the continents meet oceanic crust. The technique has been used to measure the crustal thickness of areas such as the South Atlantic, the Gulf of Mexico and the Arctic to identify new areas for oil and gas reserves.

The continental crust is the layer of granitic, sedimentary and metamorphic rock that forms the continents. This crust is very thick compared to oceanic crust which forms part of the outermost shell of the planet. The transition between the continental and oceanic crusts, however, is very difficult for scientists to identify because it lies far out to sea under thick sediments.

The area that separates the continental and oceanic crust is called a rifted continental margin; this forms when continents start to break apart and new oceans are formed in between. Scientists have been investigating where and how these margins are formed to better understand the map of the world and in particular where new oil and gas reserves may be found.

The new satellite remote sensing method relies on very small fluctuations in the strength of the Earth’s gravitational field that occur as a result of the difference in thickness between the continental crust and the oceanic crust. Scientists can use the variations in the strength of this field to predict the thickness of crust and map the edge of the continental and the start of oceanic crust under the sea.

Professor Nick Kusznir, at the University’s Department of Earth and Ocean Sciences, explains: “Understanding where rifted continental margins are located and how they form is important both for finding oil and gas reserves at continent-ocean margins and for territorial claims under the UN law of the sea process.

“As conventional oil and gas resources become progressively exhausted, our future supplies will need to come from sedimentary basins at rifted continental margins in very deep present day waters. While deep water oil and gas exploration at rifted continental margins is very expensive it can produce enormous rewards as illustrated by recent major oil and gas discoveries in offshore Brazil, Angola and the Gulf of Mexico.”

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk
http://liv.ac.uk/newsroom

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>