Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites Peer Into Rock 50 Miles Beneath Tibetan Plateau

27.07.2015

Study sharpens picture of geological forces that shaped the Himalayas

Gravity data captured by satellite has allowed researchers to take a closer look at the geology deep beneath the Tibetan Plateau.


Image by Younghong Shin of the Korea Institute of Geosciences and Mineral Resource, courtesy of The Ohio State University.

Topography (left) and a shaded relief map (right) of the rock deep beneath the Tibetan Plateau. Color indicates kilometers below Earth's surface.

The analysis, published in the journal Nature Scientific Reports, offers some of the clearest views ever obtained of rock moving up to 50 miles below the plateau, in the lowest layer of Earth’s crust.

There, the Indian tectonic plate presses continually northward into the Eurasian tectonic plate, giving rise to the highest mountains on Earth—and deadly earthquakes, such as the one that killed more than 9,000 people in Nepal earlier this year.

The study supports what researchers have long suspected: Horizontal compression between the two continental plates is the dominant driver of geophysical processes in the region, said C.K. Shum, professor and Distinguished University Scholar in the Division of Geodetic Science, School of Earth Sciences at The Ohio State University and a co-author of the study.

“The new gravity data onboard the joint NASA-German Aerospace Center GRACE gravimeter mission and the European Space Agency’s GOCE gravity gradiometer mission enabled scientists to build global gravity field models with unprecedented accuracy and resolution, which improved our understanding of the crustal structure,” Shum said. “Specifically, we’re now able to better quantify the thickening and buckling of the crust beneath the Tibetan Plateau.”

Shum is part of an international research team led by Younghong Shin of the Korea Institute of Geosciences and Mineral Resource. With other researchers in Korea, Italy and China, they are working together to conduct geophysical interpretations of the Tibetan Plateau geodynamics using the latest combined gravity measurements by the GOCE gravity gradiometer and the GRACE gravimeter missions.

Satellites such as GRACE and GOCE measure small changes in the force of gravity around the planet. Gravity varies slightly from place to place in part because of an uneven distribution of rock in Earth’s interior.

The resulting computer model offers a 3-D reconstruction of what’s happening deep within the earth.

As the two continental plates press together horizontally, the crust piles up. Like traffic backing up on a congested freeway system, the rock follows whatever side roads may be available to relieve the pressure.

But unlike cars on a freeway, the rock beneath Tibet has two additional options for escape. It can push upward to form the Himalayan mountain chain, or downward to form the base of the Tibetan Plateau.

The process takes millions of years, but caught in the 3-D image of the computer model, the up-and-down and side-to-side motions create a complex interplay of wavy patterns at the boundary between the crust and the mantle, known to researchers as the Mohorovičić discontinuity, or “Moho.”

“What’s particularly useful about the new gravity model is that it reveals the Moho topography is not random, but rather has a semi-regular pattern of ranges and folds, and agrees with the ongoing tectonic collision and current crustal movement measured by GPS,” Shin said.

As such, the researchers hope that the model will provide new insights into the analysis of collisional boundaries around the world.

Co-author Carla Braitenberg of the University of Trieste said that the study has already helped explain one curious aspect of the region’s geology: the sideways motion of the Tibetan Plateau. While India is pushing the plateau northward, GPS measurements show that portions of the crust are flowing eastward and even turning to the southeast.

“The GOCE data show that the movement recorded at the surface has a deep counterpart at the base of the crust,” Braitenberg said. Connecting the rock flow below to movement above will help researchers better understand the forces at work in the region.

Those same forces led to the deadly Nepal earthquake in April 2015. But Shum said that the new model almost certainly won’t help with earthquake forecasting—at least not in the near future.

“I would say that we would understand the mechanism more if we had more measurements,” he said, but such capabilities “would be very far away.”

Even in California—where, Shum pointed out, different tectonic processes are at work than in Tibet—researchers are unable to forecast earthquakes, despite having abundant GPS, seismic and gravity data. Even less is known about Tibet, in part because the rough terrain makes installing GPS equipment difficult.

Other co-authors on the study included Sang Mook Lee of Seoul National University; Sung-Ho Na of the University of Science and Technology in Daejeon, Korea;
Kwang Sun Choi of Pusan National University; Houtse Hsu of the Institute of Geodesy & Geophysics, Chinese Academy of Sciences; and Young-Sue Park and Mutaek Lim of the Korea Institute of Geosciences and Mineral Resource.

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources, funded by the Ministry of Science, ICT and Future Planning of Korea. Shum was partially supported by NASA’s GRACE Science Team Program and Concept in Advanced Geodesy Program. Braitenberg was partially supported by the European Space Agency’s Center for Earth Observation as part of the GOCE User ToolBox project.

Contact: C.K. Shum, +1 614 292-7118; ckshum@osu.edu
Younghong Shin, +82 10-3879-1102, yhshin@kigam.re.kr

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pamela Gorder | newswise

Further reports about: GPs Tibet computer model earthquake gravity gravity data measurements movement tectonic plate

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>