Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites Peer Into Rock 50 Miles Beneath Tibetan Plateau

27.07.2015

Study sharpens picture of geological forces that shaped the Himalayas

Gravity data captured by satellite has allowed researchers to take a closer look at the geology deep beneath the Tibetan Plateau.


Image by Younghong Shin of the Korea Institute of Geosciences and Mineral Resource, courtesy of The Ohio State University.

Topography (left) and a shaded relief map (right) of the rock deep beneath the Tibetan Plateau. Color indicates kilometers below Earth's surface.

The analysis, published in the journal Nature Scientific Reports, offers some of the clearest views ever obtained of rock moving up to 50 miles below the plateau, in the lowest layer of Earth’s crust.

There, the Indian tectonic plate presses continually northward into the Eurasian tectonic plate, giving rise to the highest mountains on Earth—and deadly earthquakes, such as the one that killed more than 9,000 people in Nepal earlier this year.

The study supports what researchers have long suspected: Horizontal compression between the two continental plates is the dominant driver of geophysical processes in the region, said C.K. Shum, professor and Distinguished University Scholar in the Division of Geodetic Science, School of Earth Sciences at The Ohio State University and a co-author of the study.

“The new gravity data onboard the joint NASA-German Aerospace Center GRACE gravimeter mission and the European Space Agency’s GOCE gravity gradiometer mission enabled scientists to build global gravity field models with unprecedented accuracy and resolution, which improved our understanding of the crustal structure,” Shum said. “Specifically, we’re now able to better quantify the thickening and buckling of the crust beneath the Tibetan Plateau.”

Shum is part of an international research team led by Younghong Shin of the Korea Institute of Geosciences and Mineral Resource. With other researchers in Korea, Italy and China, they are working together to conduct geophysical interpretations of the Tibetan Plateau geodynamics using the latest combined gravity measurements by the GOCE gravity gradiometer and the GRACE gravimeter missions.

Satellites such as GRACE and GOCE measure small changes in the force of gravity around the planet. Gravity varies slightly from place to place in part because of an uneven distribution of rock in Earth’s interior.

The resulting computer model offers a 3-D reconstruction of what’s happening deep within the earth.

As the two continental plates press together horizontally, the crust piles up. Like traffic backing up on a congested freeway system, the rock follows whatever side roads may be available to relieve the pressure.

But unlike cars on a freeway, the rock beneath Tibet has two additional options for escape. It can push upward to form the Himalayan mountain chain, or downward to form the base of the Tibetan Plateau.

The process takes millions of years, but caught in the 3-D image of the computer model, the up-and-down and side-to-side motions create a complex interplay of wavy patterns at the boundary between the crust and the mantle, known to researchers as the Mohorovičić discontinuity, or “Moho.”

“What’s particularly useful about the new gravity model is that it reveals the Moho topography is not random, but rather has a semi-regular pattern of ranges and folds, and agrees with the ongoing tectonic collision and current crustal movement measured by GPS,” Shin said.

As such, the researchers hope that the model will provide new insights into the analysis of collisional boundaries around the world.

Co-author Carla Braitenberg of the University of Trieste said that the study has already helped explain one curious aspect of the region’s geology: the sideways motion of the Tibetan Plateau. While India is pushing the plateau northward, GPS measurements show that portions of the crust are flowing eastward and even turning to the southeast.

“The GOCE data show that the movement recorded at the surface has a deep counterpart at the base of the crust,” Braitenberg said. Connecting the rock flow below to movement above will help researchers better understand the forces at work in the region.

Those same forces led to the deadly Nepal earthquake in April 2015. But Shum said that the new model almost certainly won’t help with earthquake forecasting—at least not in the near future.

“I would say that we would understand the mechanism more if we had more measurements,” he said, but such capabilities “would be very far away.”

Even in California—where, Shum pointed out, different tectonic processes are at work than in Tibet—researchers are unable to forecast earthquakes, despite having abundant GPS, seismic and gravity data. Even less is known about Tibet, in part because the rough terrain makes installing GPS equipment difficult.

Other co-authors on the study included Sang Mook Lee of Seoul National University; Sung-Ho Na of the University of Science and Technology in Daejeon, Korea;
Kwang Sun Choi of Pusan National University; Houtse Hsu of the Institute of Geodesy & Geophysics, Chinese Academy of Sciences; and Young-Sue Park and Mutaek Lim of the Korea Institute of Geosciences and Mineral Resource.

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources, funded by the Ministry of Science, ICT and Future Planning of Korea. Shum was partially supported by NASA’s GRACE Science Team Program and Concept in Advanced Geodesy Program. Braitenberg was partially supported by the European Space Agency’s Center for Earth Observation as part of the GOCE User ToolBox project.

Contact: C.K. Shum, +1 614 292-7118; ckshum@osu.edu
Younghong Shin, +82 10-3879-1102, yhshin@kigam.re.kr

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pamela Gorder | newswise

Further reports about: GPs Tibet computer model earthquake gravity gravity data measurements movement tectonic plate

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>