Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite research reveals smaller volcanoes could cool climate

06.07.2012
A University of Saskatchewan-led international research team has discovered that aerosols from relatively small volcanic eruptions can be boosted into the high atmosphere by weather systems such as monsoons, where they can affect global temperatures. The research appears in the July 6 issue of the journal Science.

Adam Bourassa, from the U of S Institute of Space and Atmospheric Studies, led the research. He explains that until now it was thought that a massively energetic eruption was needed to inject aerosols past the troposphere, the turbulent atmospheric layer closest to the earth, into the stable layers of the stratosphere higher up.

"If an aerosol is in the lower atmosphere, it's affected by the weather and it precipitates back down right away," Bourassa says. "Once it reaches the stratosphere, it can persist for years, and with that kind of a sustained lifetime, it can really have a lasting effect." That effect is the scattering of incoming sunlight and the potential to cool the Earth's surface.

For example, the massive eruption of Mount Pinatubo in the Philippines in 1991 temporarily dropped temperatures by half a degree Celsius world-wide.

The research team includes scientists from the U of S, Rutgers University in New Jersey, the National Centre for Atmospheric Research in Colorado, and the University of Wyoming. They looked at the June 2011 eruption of the Nabro volcano in Eritrea in northeast Africa. Wind carried the volcanic gas and aerosol – minute droplets of sulfuric acid – into the path of the annual Asian summer monsoon.

The stratosphere's calm layers are high – from 10 km up at the poles to 17 km altitude at the equator – and it was thought storms could not pierce it. For example, the distinctive flattened "anvil" shape at the top of large thunderstorms is created as the storm pushes against the stratosphere.

Dust from the Nabro volcano, being slightly heavier, settled out, but the monsoon lofted volcanic gas and the lighter liquid droplets into the stratosphere where they were detected by the Canadian Space Agency's OSIRIS instrument aboard the Swedish satellite Odin. The Nabro volcano caused the largest stratospheric aerosol load ever recorded by OSIRIS in its more than 10 years of flight.

OSIRIS, designed in part at the U of S, is used to study the upper atmosphere, particularly the ozone layer and atmospheric aerosols. Originally intended for a two-year mission, the instrument has been functioning flawlessly since its launch in 2001. It circles the earth from pole to pole once every hour and a half, downloading fresh data to the analysis centre at the U of S campus.

"There are only a few instruments that can measure stratospheric aerosols, and OSIRIS is one of them," Bourassa says. "It's become extremely important for climate studies, because we've captured more than a full decade of data. The longer it's up, the more valuable it becomes."

The hope is these latest findings will provide another piece of the puzzle to allow more accurate models of climate behavior and change.

Funding for this research was provided by NSERC, the Canadian Space Agency, the U.S. National Science Foundation, with support from the NASA Aura Science Team.

Michael Robin | EurekAlert!
Further information:
http://www.usask.ca

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>