Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite research reveals smaller volcanoes could cool climate

06.07.2012
A University of Saskatchewan-led international research team has discovered that aerosols from relatively small volcanic eruptions can be boosted into the high atmosphere by weather systems such as monsoons, where they can affect global temperatures. The research appears in the July 6 issue of the journal Science.

Adam Bourassa, from the U of S Institute of Space and Atmospheric Studies, led the research. He explains that until now it was thought that a massively energetic eruption was needed to inject aerosols past the troposphere, the turbulent atmospheric layer closest to the earth, into the stable layers of the stratosphere higher up.

"If an aerosol is in the lower atmosphere, it's affected by the weather and it precipitates back down right away," Bourassa says. "Once it reaches the stratosphere, it can persist for years, and with that kind of a sustained lifetime, it can really have a lasting effect." That effect is the scattering of incoming sunlight and the potential to cool the Earth's surface.

For example, the massive eruption of Mount Pinatubo in the Philippines in 1991 temporarily dropped temperatures by half a degree Celsius world-wide.

The research team includes scientists from the U of S, Rutgers University in New Jersey, the National Centre for Atmospheric Research in Colorado, and the University of Wyoming. They looked at the June 2011 eruption of the Nabro volcano in Eritrea in northeast Africa. Wind carried the volcanic gas and aerosol – minute droplets of sulfuric acid – into the path of the annual Asian summer monsoon.

The stratosphere's calm layers are high – from 10 km up at the poles to 17 km altitude at the equator – and it was thought storms could not pierce it. For example, the distinctive flattened "anvil" shape at the top of large thunderstorms is created as the storm pushes against the stratosphere.

Dust from the Nabro volcano, being slightly heavier, settled out, but the monsoon lofted volcanic gas and the lighter liquid droplets into the stratosphere where they were detected by the Canadian Space Agency's OSIRIS instrument aboard the Swedish satellite Odin. The Nabro volcano caused the largest stratospheric aerosol load ever recorded by OSIRIS in its more than 10 years of flight.

OSIRIS, designed in part at the U of S, is used to study the upper atmosphere, particularly the ozone layer and atmospheric aerosols. Originally intended for a two-year mission, the instrument has been functioning flawlessly since its launch in 2001. It circles the earth from pole to pole once every hour and a half, downloading fresh data to the analysis centre at the U of S campus.

"There are only a few instruments that can measure stratospheric aerosols, and OSIRIS is one of them," Bourassa says. "It's become extremely important for climate studies, because we've captured more than a full decade of data. The longer it's up, the more valuable it becomes."

The hope is these latest findings will provide another piece of the puzzle to allow more accurate models of climate behavior and change.

Funding for this research was provided by NSERC, the Canadian Space Agency, the U.S. National Science Foundation, with support from the NASA Aura Science Team.

Michael Robin | EurekAlert!
Further information:
http://www.usask.ca

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>