Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Satellite imagery detects thermal 'uplift' signal of underground nuclear tests

The study this release is based on is available at OSU Scholars Archive:

A new analysis of satellite data from the late 1990s documents for the first time the “uplift” of ground above a site of underground nuclear testing, providing researchers a potential new tool for analyzing the strength of detonation.

The study has just been published in Geophysical Research Letters.

Lead author Paul Vincent, a geophysicist at Oregon State University, cautions that the findings won’t lead to dramatic new ability to detect secret nuclear explosions because of the time lag between the test and the uplift signature, as well as geophysical requirements of the underlying terrain. However, he said, it does “provide another forensic tool for evaluation, especially for the potential explosive yield estimates.”

“In the past, satellites have been used to look at surface subsidence as a signal for nuclear testing,” said Vincent, an associate professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “This is the first time uplift of the ground has correlated to a nuclear test site. The conditions have to be just right and this won’t work in every location.

“But it is rather interesting,” he added. “It took four years for the source of the uplift signal – a thermal groundwater plume – to reach the surface.”

The focus of the study was Lop Nor, a nuclear testing site in China where three tests were conducted – May 21, 1992; May 15, 1995; and Aug. 17, 1995. Vincent and his colleagues analyzed interferometric synthetic aperture radar (InSAR) images from 1996-99 and detected a change in the surface beginning four years after the tests.

Though the uplift was less than two inches, it corresponds to known surface locations above past tests within the Lop Nor test site.

From past studies, the researchers knew that heat from underground detonation of nuclear devices propagates slowly toward the surface. At most sites – including the Nevada National Security Site – that heat signal dissipates laterally when it reaches the water table, which is usually deep beneath the surface.

At Lop Nor, however, the water table is only about three meters below the surface, and the heated groundwater plume took four years to reach that high, lifting the ground above the detonation site slightly – but enough to be detected through InSAR images.

Lop Nor also is characterized by a hard granite subsurface, which helps pipe the heated water vertically and prevents the subsidence frequently found at other testing sites.

A past study by Vincent, published in 2003, first shed light on how subsidence can manifest itself in different ways – from the force of the explosion creating a crater, to more subtle effects of “chimneying,” in which the blast opens up a chimney of sorts and draws material downward, creating a dimple at the ground surface.

Before joining the OSU faculty in 2007, Vincent spent several years as a physicist at the Lawrence Livermore National Laboratory.

Vincent said the analysis of nuclear explosions has become a specialized field. Seismology technology can provide an initial estimate of the energy of the explosion, but that data is only good if the seismic waves accurately reflect coupling to the connecting ground in a natural way, he explained. Efforts are sometimes made to “decouple” the explosive device from the ground by creating specializing testing chambers that can give off a false signal, potentially masking the true power of a test.

“Subsidence data combined with seismic data have helped narrow the margin of error in estimating the explosive yield,” Vincent noted, “and now there is the potential to use test-related thermal expansion as another forensic tool.”

Co-authors on the paper with Vincent include Sean Buckley of the Jet Propulsion Laboratory, Dochul Yang, the University of Texas-Austin, and Steve Carle, of Lawrence Livermore National Laboratory.

About the OSU College of Oceanic and Atmospheric Sciences: COAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges.

Paul Vincent | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>