Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sand layer plays a key role in protecting the underlying permafrost in the Qinghai-Tibet Plateau

05.03.2012
The permafrost is degrading, and at the same time, the desertification is also developing at the surface of Qinghai-Tibet Plateau, under the condition of global warming. Sand layer is accelerated permafrost degradation or protecting permafrost? No significant conclusions have been drawn currently.

Some studies have shown that ground temperature in regions of windblown sand within the permafrost zone of the Qinghai-Tibet Plateau are higher than in regions not affected by sand, which may accelerate the degradation of permafrost.

Other studies have shown the dual nature of the sand layer on the ground temperature: the ground temperature in a zone of thick sand layer coverage is higher than that in a non-sandy zone, thereby accelerating the thawing of permafrost, whereas the ground temperature in a zone of thin sand layer coverage is lower than that in a non-sandy zone, thereby protecting the permafrost. Because of the conditions and technical limitations during that period, the above researches comprise only sporadic observations and simple reasoning. Moreover, lack long-term observations and systematic research; therefore, the conclusions vary, and sometimes even contradict one another.

In order to clarify the scientific problems, Prof. Jianjun Qu and his student Dr. Shengbo Xie of the Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, were funded by the National Natural Science Foundation of China and the Knowledge Innovation Project of Chinese Academy of Sciences, an experimental field was set up by them in the hinterland desert permafrost regions of Qinghai-Tibet Plateau, in 2010. Synchronized contrasting observations were made in an open area, and observations of the ground temperature of permafrost below sand layer covering were conducted more than one year. Sand layer was found to plays a key role in protecting the underlying permafrost in Qinghai-Tibet Plateau. Their research work, entitled "New discoveries on the effects of desertification on the ground temperature of permafrost and its significance to the Qinghai-Tibet Plateau", was published in Chinese Science Bulletin. 2012, Vol 57.

The result shows that, in the desert permafrost regions of Qinghai-Tibet Plateau, the ground temperature below thick sand layer was bounded near the permafrost table, compared to that of the natural ground surface. The ground temperature of the permafrost below this depth decreased during the observation period. Moreover, the ground temperature in the active layer above the depth varied with the seasons. i.e., the ground temperature decreased during the summer half-year (May to September), and increased in negative value, however, the whole permafrost layer below the ground surface was in a frozen state during the winter half-year (November to March), lead to the annual range of ground temperature decreased, with April and October being transitional stages. During the month of April, the soil turned from the frozen state into the thawed state, and the ground temperature of the active layer below the thick sand layer was lower than the temperature of the natural surface. During the month of October, the soil turned from the thawed state into the frozen state, and the ground temperature of the active layer below the thick sand layer was higher than the temperature of the natural surface. The ground temperature near the permafrost table below the thin sand layer was decreased throughout the year, whereas the ground temperature difference in the upper active layer and underlying permafrost layer gradually decreased. Thus, the sand layer in the Qinghai–Tibet Plateau, in general, preserves the underlying permafrost. The method of sand coverage can be considered in the future practice of permafrost protection; this work could provide a new idea to protect the permafrost in the regions of engineering construction.

The result also shows that, the changes in the ground temperature of the permafrost below sand layer can be attributed mainly to the differences of reflectivity and heat conductivity between the sand layer and natural ground surface in Qinghai-Tibet Plateau. The sand layer causes a stronger blocking effect to the heat exchange of land–atmosphere system because of its high reflectivity and poor heat conductivity, compared to that of the natural ground surface. During the summer half-year, the surface air temperature was positive in value and higher than the ground temperature, the sand layer blocked the downward transfer of surface heat; during the winter half-year, the surface air temperature was negative in value and lower than the ground temperature. Similarly, the sand layer prevented the upward transfer of underground heat.

The scientific significance of the research is not only to present an exploration of the interaction between desertification and permafrost, enriched the theoretical system of geocryology and desert science, but also has the reference value to permafrost engineering.

See the article: Xie S B, Qu J J, Zu R P, et al. New discoveries on the effects of desertification on the ground temperature of permafrost and its significance to the Qinghai-Tibet Plateau. Chinese Science Bulletin, 2012, 57:838-842

Qu Jianjun | EurekAlert!
Further information:
http://www.lzb.ac.cn
http://zh.scichina.com/english/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>