Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of goop: Research shows pollution doesn't change the rate of droplet formation

19.02.2013
When it comes to forming the droplets that make up clouds, a little oily and viscous organic material apparently doesn't matter that much. And that's good news for reducing the uncertainty of climate model predictions.

Understanding cloud formation is essential for accurate climate modeling, and understanding cloud formation begins with the droplets that make up clouds. Droplets form when water vapor is attracted to particles floating in the atmosphere. These particles include dust, sea salt from the ocean, microorganisms, soot, sulfur – and organic material that can be both viscous and oily.

For years, scientists had believed that particles coated with this organic "goop" – produced by combusted petroleum and biomass – could form droplets more slowly than other particles. That would have had a significant impact on the formation of clouds.

But a study being reported this week in the journal Proceedings of the National Academy of Science suggests that the long-held belief isn't true. Based on aerial and ground-based measurements of droplet formation from ten different areas of the northern hemisphere, researchers at the Georgia Institute of Technology report that organic coatings on particles don't seem to significantly affect the rate at which droplets form. The researchers studied a wide range of particles, including organic, hydrocarbon-rich particles from the 2010 Deepwater Horizon oil spill in the Gulf of Mexico.

"It turns out that it doesn't matter how much goop you have – or don't have – the droplets take the same time to form," said Athanasios Nenes, a professor in the School of Earth and Atmospheric Sciences and the School of Chemical and Biomolecular Engineering at Georgia Tech. "Even in extreme environments like Deepwater Horizon, the rate of droplet formation on particles found over the spill doesn't differ from that of typical sea salt particles."

The research was scheduled to be published in the early online edition of the journal during the week of February 18th. The research was supported by the National Science Foundation (NSF), NASA, the Department of Energy, the National Oceanic and Atmospheric Administration (NOAA) and the Office of Naval Research (ONR).

Clouds can hold in heat emitted from the Earth's surface, contributing to climate warming. But they can also reflect incoming sunlight back to space, producing a climate cooling effect. Predicting how cloud cover will change in the future is therefore essential to good climate modeling.

"The reason we care about droplet formation rates is because the more slowly the droplets form, the more droplets you end up having in clouds," Nenes said. "This, in turn, affects cloud properties and their climate impacts. For many years, there was the perception that having a lot of oily organic compounds from pollution would make water uptake a lot slower and might make droplets take longer to form. If that were true, it would mean that the impact pollution could have on clouds and climate would be much larger than we thought."

And that created a large question mark in climate models.

To address that issue, Nenes and his collaborators began a series of studies using a mini cloud formation chamber small enough to be operated aboard an aircraft. The chamber consists of a long metal tube that is heated at one end and cooled at the other. The walls of the chamber are kept moist, and air containing particles from outside the aircraft is flowed through. Droplets form on the particles when air in the chamber becomes cool enough that it can no longer retain the moisture. The droplets then exit the chamber where they can be studied.

"With the chamber, we essentially create a cloud in a tube," Nenes said. "The difference between the cloud in the tube and the cloud outside is that the tube allows us to precisely control the temperature and the amount of water vapor available. We know exactly what is going on with that cloud, and this allows for very accurate measurements of cloud formation."

Beginning in 2004, Nenes and his graduate students took the chamber along on ten missions operated by NASA, NSF, NOAA and ONR. They flew through the pristine air of the Arctic, smoke from forest fires in Canada, and polluted air masses over the United States. They also sampled polluted air over Mexico City, clean air over the forests of Finland, and dust-laden air over the Mediterranean. Though the particles flowing through the cloud chamber were different each time, the rate at which they formed droplets, the condensation coefficient, remained the same.

"We have literally hundreds of hours of data studying cloud formation from areas all over the globe," Nenes said. "We didn't see any changes in the droplet nucleation time scale."

In future studies, Nenes would like to study particles from other areas of the world, especially Africa and China. He'd also like to see what happens when the temperature of the air flowing through the cloud chamber is cold enough to form ice. There is some evidence that the kinetics of ice formation may be different in particles that are rich in "goop."

The study of droplet formation provides one small step toward reducing the uncertainty in climate modeling.

"This is good for atmospheric and climate scientists, because some of the uncertainty of droplet formation and aerosol impacts goes away," Nenes added. "With careful measurements and global deployment of measuring instruments, you can actually resolve outstanding questions in cloud physics and help simplify the descriptions of clouds in climate models."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>