Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of goop: Research shows pollution doesn't change the rate of droplet formation

19.02.2013
When it comes to forming the droplets that make up clouds, a little oily and viscous organic material apparently doesn't matter that much. And that's good news for reducing the uncertainty of climate model predictions.

Understanding cloud formation is essential for accurate climate modeling, and understanding cloud formation begins with the droplets that make up clouds. Droplets form when water vapor is attracted to particles floating in the atmosphere. These particles include dust, sea salt from the ocean, microorganisms, soot, sulfur – and organic material that can be both viscous and oily.

For years, scientists had believed that particles coated with this organic "goop" – produced by combusted petroleum and biomass – could form droplets more slowly than other particles. That would have had a significant impact on the formation of clouds.

But a study being reported this week in the journal Proceedings of the National Academy of Science suggests that the long-held belief isn't true. Based on aerial and ground-based measurements of droplet formation from ten different areas of the northern hemisphere, researchers at the Georgia Institute of Technology report that organic coatings on particles don't seem to significantly affect the rate at which droplets form. The researchers studied a wide range of particles, including organic, hydrocarbon-rich particles from the 2010 Deepwater Horizon oil spill in the Gulf of Mexico.

"It turns out that it doesn't matter how much goop you have – or don't have – the droplets take the same time to form," said Athanasios Nenes, a professor in the School of Earth and Atmospheric Sciences and the School of Chemical and Biomolecular Engineering at Georgia Tech. "Even in extreme environments like Deepwater Horizon, the rate of droplet formation on particles found over the spill doesn't differ from that of typical sea salt particles."

The research was scheduled to be published in the early online edition of the journal during the week of February 18th. The research was supported by the National Science Foundation (NSF), NASA, the Department of Energy, the National Oceanic and Atmospheric Administration (NOAA) and the Office of Naval Research (ONR).

Clouds can hold in heat emitted from the Earth's surface, contributing to climate warming. But they can also reflect incoming sunlight back to space, producing a climate cooling effect. Predicting how cloud cover will change in the future is therefore essential to good climate modeling.

"The reason we care about droplet formation rates is because the more slowly the droplets form, the more droplets you end up having in clouds," Nenes said. "This, in turn, affects cloud properties and their climate impacts. For many years, there was the perception that having a lot of oily organic compounds from pollution would make water uptake a lot slower and might make droplets take longer to form. If that were true, it would mean that the impact pollution could have on clouds and climate would be much larger than we thought."

And that created a large question mark in climate models.

To address that issue, Nenes and his collaborators began a series of studies using a mini cloud formation chamber small enough to be operated aboard an aircraft. The chamber consists of a long metal tube that is heated at one end and cooled at the other. The walls of the chamber are kept moist, and air containing particles from outside the aircraft is flowed through. Droplets form on the particles when air in the chamber becomes cool enough that it can no longer retain the moisture. The droplets then exit the chamber where they can be studied.

"With the chamber, we essentially create a cloud in a tube," Nenes said. "The difference between the cloud in the tube and the cloud outside is that the tube allows us to precisely control the temperature and the amount of water vapor available. We know exactly what is going on with that cloud, and this allows for very accurate measurements of cloud formation."

Beginning in 2004, Nenes and his graduate students took the chamber along on ten missions operated by NASA, NSF, NOAA and ONR. They flew through the pristine air of the Arctic, smoke from forest fires in Canada, and polluted air masses over the United States. They also sampled polluted air over Mexico City, clean air over the forests of Finland, and dust-laden air over the Mediterranean. Though the particles flowing through the cloud chamber were different each time, the rate at which they formed droplets, the condensation coefficient, remained the same.

"We have literally hundreds of hours of data studying cloud formation from areas all over the globe," Nenes said. "We didn't see any changes in the droplet nucleation time scale."

In future studies, Nenes would like to study particles from other areas of the world, especially Africa and China. He'd also like to see what happens when the temperature of the air flowing through the cloud chamber is cold enough to form ice. There is some evidence that the kinetics of ice formation may be different in particles that are rich in "goop."

The study of droplet formation provides one small step toward reducing the uncertainty in climate modeling.

"This is good for atmospheric and climate scientists, because some of the uncertainty of droplet formation and aerosol impacts goes away," Nenes added. "With careful measurements and global deployment of measuring instruments, you can actually resolve outstanding questions in cloud physics and help simplify the descriptions of clouds in climate models."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>